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Operating Characteristics of the Implicit Learning System Supporting
Serial Interception Sequence Learning

Daniel J. Sanchez and Paul J. Reber

Northwestern University

The memory system that supports implicit perceptual-motor sequence learning relies on brain regions
that operate separately from the explicit, medial temporal lobe memory system. The implicit learning
system therefore likely has distinct operating characteristics and information processing constraints. To
attempt to identify the limits of the implicit sequence learning mechanism, participants performed the
serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were
much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment
2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in
length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating
sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to
80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A
comparison of learning rates across all three experiments found a surprising degree of constancy in the
rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be
constant with the logarithm of the number of sequence repetitions practiced during training. The
consistency in learning rate across experiments and conditions implies that the mechanisms supporting
implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by
high rates of irrelevant sequences during training.

Keywords: implicit memory, sequence learning, statistical learning

Perceptual-motor sequence learning has been considered a ca-
nonical task for observing implicit learning since the seminal study
by Nissen and Bullemer (1987) using the serial reaction time
(SRT) task. Amnesic patients exhibit spared learning of a covertly
embedded repeating sequence in a choice reaction time task de-
spite damage to their medial temporal lobe memory system and an
accompanying deficit in explicit, conscious knowledge (Nissen &
Bullemer, 1987; Reber & Squire, 1994, 1998). The information
learned by healthy participants is often outside awareness (e.g.,
Sanchez, Gobel, & Reber, 2010) and reflects the fact that perfor-
mance improves even though participants in implicit perceptual-
motor sequence learning studies are typically not informed about
what they are learning. Rather than depending on conscious
knowledge of the embedded repeating sequence, perceptual-motor
sequence learning is often described as the gradual development of
simple stimulus-response associations (Graybiel, 2008; Yin &
Knowlton, 2006), which may be combined via statistical learning
mechanisms into sequence knowledge (Perruchet & Pacton, 2006).
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A large number of studies have used the SRT task to examine
implicit perceptual-motor sequence learning (see, Abrahamse, Ji-
ménez, Verwey, & Clegg, 2010). These studies have generally
used sequences that require learning of relatively higher-order
statistics, typically second-order conditionals (SOC; Reed & John-
son, 1994). In an SOC sequence, the smallest relevant statistical
structure is a three-item trigram; in order to predict an item in the
sequence, information about the preceding two items must be
available. The learning mechanism is required to continuously
incorporate additional information about recent stimuli or re-
sponses with current stimulus-response associations, possibly
through a chunking mechanism (Graybiel, 1998).

Computational models that attempt to capture human
perceptual-motor sequence learning have either incorporated
chunking mechanisms (Servan-Schreiber & Anderson, 1990) or
used simple recurrent network (SRN) models (Cleeremans &
McClelland, 1991; Cleeremans, Servan-Schreiber, & McClelland,
1989) that use interitem statistics to essentially extract a distributed
representation of chunks. While there has been some debate about
whether chunk learning is the best description of the sequence
learning mechanism (Jiménez, 2008; Kirsch, Sebald, & Hoffmann,
2010; Koch & Hoffmann, 2000), alternate descriptions have
tended to emphasize statistics such as relational patterns (Koch &
Hoffmann, 2000) or transitional probabilities (Hunt & Aslin, 2001)
that often incorporate similar ideas. The statistical learning that
underlies sequence learning has also been studied in other con-
texts, such as language (Saffran, 2003; Saffran, Aslin, & Newport,
1996) and visual perception (Fiser, 2009), and may be a domain-
general characteristic of underlying mechanisms (Hunt & Aslin,
2001; Perruchet & Pacton, 2006).
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One of the challenges for statistical learning models is that there
are a large number of potential statistics to maintain in order to
identify which regularities are important for predicting future
experiences or behavior. Most SRT studies of sequence learning
have assessed sequences up to 12 items in length (which is the
shortest possible SOC sequence with four alternative choice re-
sponses), or used probabilistic sequences that do not depend en-
tirely on deterministic SOC statistics (Cleeremans & McClelland,
1991; Howard & Howard, 1997; Jiménez, Mendez, & Cleeremans,
1996; Schvaneveldt & Gomez, 1998). However, learning of more
complex statistical regularities has been observed (Fiser & Aslin,
2002; Howard & Howard, 1997; Hunt & Aslin, 2001; Remillard &
Clark, 2001; Schvaneveldt & Gomez, 1998), including up to
sixth-order conditionals (Remillard, 2008, 2010). Using a new
paradigm for studying perceptual-motor sequence learning, the
serial interception sequence learning (SISL) task, the amount of
statistical information required to maintain can be systematically
increased in order to examine whether sequence learning rate
slows as a function of statistical load and whether there is a level
of statistical adversity that hinders learning.

The SISL task is based on the structure of the SRT in that visual
cues are used to pace participants through a repeating sequence of
motor actions without their awareness of the embedded repeating
sequence. Instead of making a choice reaction time response,
participants make an interception response to a vertically moving
cue by pressing a response button as the cue passes through a
target zone. As can be seen in Figure 1, the SISL task is unique
from the SRT in that upcoming responses are visible on the screen
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Figure 1. The SISL task. Circular cues scroll vertically across a screen
toward one of four target zones marked as rings. Participants press the
corresponding key(s) (D, F, J, or K) on the keyboard and attempt to time
their responses so that the key is pressed just as the cue moves through the
target zone. As shown, the participant would be timing the press of the “D”
and “J” keys to coincide with the cues arriving at the vertical circle and
immediately planning subsequent responses, “K” then “F”. Dual-button
responses, such as DJ, were only used in Experiments 1 and 2. In Exper-
iment 3, the targets were at the bottom of the screen and the circles scrolled
downward.

so that participants can prepare subsequent responses and are
required to control the timing between the current response and
those forthcoming. This preview creates a constantly changing
visuospatial array that likely recruits various cortical motor areas
during performance and learning (Bosco, Carrozzo, & Lacquaniti,
2008; Port, Kruse, Lee, & Georgopoulos, 2001). The perceptual
characteristics of the SISL task make it possible that there is a
contribution to task learning from perceptual-learning mecha-
nisms, such as those that support contextual cuing (Chun & Jian,
1998), in addition to sequence learning mechanisms. In the SISL
task, participants can rapidly learn a 12-item repeating sequence
(of four motor actions, just as in the SRT task) largely in the
absence of explicit awareness (Sanchez et al., 2010). The task can
also be modified to incorporate interresponse timing, which then
becomes part of the learned sequence (Gobel, Sanchez, & Reber,
2011).

In Experiments 1 and 2 here, the task is further extended by
allowing for multiple keypress responses: pressing two response
keys simultaneously to a pair of moving cues. This extension
provides a set of 10 possible motor actions (four single-keypress
responses and six double-keypress combination responses) that
can be combined to create long repeating sequences that do not
require learning conditional probabilities higher than second-order.
In Experiment 1, participants performed the task with covert
embedded repeating sequences ranging from 30 to 60 items in
length. Experiment 2 extended these results with sequences from
60 to 90 items long across two training sessions on separate days.
The key question across these experiments is whether sequence
learning continues even when the target repeating sequence is
exceptionally long, by prior research standards. If the information-
processing capacity of the implicit perceptual-motor sequence
learning system is constrained by sequence length, significant
learning will likely not be observed for long sequences. If learning
is observed across sequence lengths, the rate of learning will be
examined to identify whether increasing sequence length slows the
rate of learning. Because there is more information to track in
longer sequences, a capacity limit in the learning mechanism
should lead to a reduction in learning rate as sequence length
increases.

In a third experiment, a 12-item repeating sequence was em-
bedded with various amounts of nonrepeating 12-item segments
during training in order to identify the effect of statistical noise on
learning rate. The addition of nonrepeating segments provides a
different challenge for sequence learning than extending the se-
quence length. The nonrepeating segments were constructed so
that all possible SOCs occur equally often, as well as first-order
conditionals and response frequency. Under these conditions, the
predictability of the next response decreases as the amount of
nonrepeating sequence trials during training increases, because
increasing nonrepeating segment trials directly increases the
amount of practice with nonrepeating SOC probabilities. If the
implicit skill learning mechanism depends solely on simple statis-
tics (e.g., the ratio of trained and untrained probabilities), learning
should be increasingly slowed as the amount of noise increases,
because the statistics are less predictive at higher noise.

Across all three experiments, a key question is whether the rate
of learning is affected by the manipulations of sequence length or
interpolated nonrepeating (noise) sequences. In each experiment,
the sequence-specific learning at the end of the one- or two-hour
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training session is reported. However, an important alternative way
to characterize the learning rate is to examine the amount of
sequence-specific learning that occurs as a function of the expe-
rience with the sequence as measured by the number of repetitions.
The learning rate data across all three experiments are reevaluated
as a function of the number of sequence repetitions in a cross-
experiment analysis after Experiments 1-3.

Experiment 1 Method

Participants

Seventy-six Northwestern University undergraduates (50
women, 26 men, M,,. = 18.6 years) received course credit for
participating.

The SISL Task

Participants observed cues (blue circles), which scrolled verti-
cally up a computer monitor in one of four horizontal locations
toward corresponding yellow target rings at the top of the screen
(see Figure 1). Participants were instructed to press the associated
key (D, F, J, or K) when a circle overlapped as closely as possible
with its target ring. One or two cues could be in the target area
simultaneously, requiring single or double keypress responses.
There were a total of 10 possible responses (four single-key, six
possible dual-key combinations). Responses were scored as correct
if the participant pressed only the correct corresponding key(s)
while the cue was within a given distance from the target zone
(roughly 180 ms from perfect overlap). Feedback was provided via
the target rings flashing green to correct keypresses and red to
errors as well as a score bar located above the target rings, which
increased in size by 10% for correct responses and decreased by
2% for errors.

Cues initially moved with a velocity of 11.4 degrees/s and
reached the target zones 2.0 s after first appearing at the bottom of
the screen. The interval between cues was initially 500 ms, so that
three to four cues appeared at a time on the screen, allowing for
planning of upcoming responses. During training, percent-correct
performance was assessed after every 50 trials and the overall
speed of the cues was adjusted to increase or decrease the diffi-
culty of the task adaptively. Performance at 90% correct or better
decreased the time-to-target by 50 ms, while 70 to 89% correct
decreased it by 25 ms. Performance at 11 to 30% increased
time-to-target by 25 ms, and performance of 10% or lower de-
creased it by 50 ms. The interstimulus interval was adjusted with
cue velocity such that the visual distance between cues remained
constant through training.

Participants were not informed that the cues followed a repeat-
ing sequence of 30-, 40-, 50-, or 60-items in length on 80% of the
training trials. The training sequences were constructed with sim-
ilar constraints to the SOC structure described in Reed and John-
son (1994). The sequences had no repeated items (e.g., no K-K),
no completion runs (e.g., no D-F-J-K), and no paired items re-
peated in a sequence (e.g., if K-D was a part of the sequence, it
would not appear elsewhere in the same sequence). The double-
motor operator items (DF, DJ, DK, FJ, FK, and JK) were treated
as separate responses, so that items which included overlapping

motor operators (e.g., F-DF-DK) were not considered item repe-
titions.

Procedure

Participants were randomly assigned to one of four sequence-
length training conditions and one of three repeating sequences
within each condition. Before training, participants received 24
random trials of practice to familiarize themselves with the SISL
task. The training phase of the experiment consisted of four 750-
trial blocks (3000 trials total) with short, self-terminated rest
breaks between blocks. Each block consisted of 600 trials of the
trained sequence and 150 trials of nonrepeating sequence segments
(20% of trials), resulting in 20, 15, 12, or 10 sequence repetitions
per block (30-, 40-, 50-, and 60-item sequence lengths, respec-
tively). The blocks were structured so that a novel segment oc-
curred after every one or two trained sequence repetitions, and
each new training block began with a novel segment. This block
structure masked the first and the last item of each sequence to
inhibit explicit sequence knowledge. The nonrepeating segments
were 15, 10, 25, or 15 items in length across conditions (30, 40, 50,
and 60 items, respectively). The sequences and novel segments
were constructed following the same constraints, but the novel
segments did not repeat. The nonrepeating segments used the 10
responses equally often (as in the training sequences) but had
minimal overlap with the training sequences at the SOC (trigram)
level (810 unique trigrams were available while avoiding response
repetition).

After training, three tests of sequence knowledge were admin-
istered. First, participants performed an implicit knowledge test
using the SISL task, consisting of the three repeating sequences for
their sequence length condition (one trained, two novel). Each
sequence was performed four times in the 40- to 60-length condi-
tions and eight times in the 30-item condition in order to roughly
maintain session duration across conditions. The order of the
sequences was randomized and no indication of breaks between
the sequences was given. Implicit sequence knowledge was as-
sessed by comparing SISL performance on the practiced sequence
with the two foil sequences.

After the implicit test of sequence knowledge, participants were
informed that there had been a repeating sequence during training
and were given a recognition test. However, due to a programming
error, the recognition test was not administered properly and the
resulting data were unusable. Participants were also given a free
recall test in which participants saw the screen with only the
yellow targets and used the keyboard to indicate their best guess as
to what they thought the repeating sequence had been. Participants
were required to generate 30 responses. The sequences provided
during the recall test were compared with the trained sequence, the
two foil sequences from the implicit test, and two unseen, novel
sequences; the longest matching subsequence was identified for
each.

Experiment 1 Results

Sequence Training Performance

Sequence-specific learning, calculated as the percent-correct
performance difference between the trained sequence and the
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novel segments during training, was analyzed with a mixed 4 X 4
analysis of variance (ANOVA) of length group (30, 40, 50, and 60
items) and training block. A trend analysis revealed a linear
increase in sequence-specific learning across the four training
blocks, F(1,72) = 53.82, p < .001, > = .41 (Figure 2a), resulting
in the trained sequence being performed significantly better (M =
57.41%, SE = 1.16%) than the novel segments (M = 50.46%,
SE = 1.26%) during the last block of training. All groups exhibited
similar sequence learning throughout training because there was
neither a main effect of length condition nor a significant interac-
tion.

Implicit Sequence Knowledge Posttest

At test, all of the sequence length groups performed better on the
trained sequence (M = 56.74%, SE = 1.44%) than on the foil
sequences (M = 51.05%, SE = 1.42%), F(1, 72) = 3844, p <
.001, n? = .31. However, the percent-correct performance differ-
ence at test decreased linearly across conditions as the sequence
lengths increased, F(1, 72) = 11.40, p < .01, nz = .14, indicating
more sequence-specific knowledge of the shorter sequences. The
performance difference between the trained sequence and mean of
the foil sequences was significant in the 30-item (M = 11.00%,
SE = 1.99%), 1(14) = 5.52, p < .001, 40-item (M = 7.45%, SE =
2.43%), t(17) = 3.06, p < .01, and 50-item (M = 4.86%, SE =
2.07%), t(18) = 2.35, p < .05, conditions (Figure 2b). The
performance difference during training was not observed for the
60-item condition at test, and the slight performance improvement
for the trained sequence was not reliable (M = 1.71%, SE =
1.54%), p = .28.
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Explicit Sequence Knowledge Posttest

The sequences generated by the participants as they attempted to
recall the trained sequence matched the trained sequence (M =
3.37 items, SE = .11) better than the foil sequences (M = 2.87
items, SE = .04), F(1, 72) = 17.68, p < .001, n* = .18. A
significant interaction was found between the matched subse-
quence lengths (novel/foil vs. trained) and the sequence length
condition, F(3, 72) = 3.17, p < .05, n*> = .10, suggesting that
explicit knowledge varied across the groups. A recall score for
each condition was calculated as the difference between the length
of the longest matching subsequence to the trained sequence and
the mean length to the foil sequences. The recall score in the
30-item condition was only marginal (M = .62, SE = 31), #(14) =
2.01, p = .06, and neither the 40-item (M = .26, SE = .16),
t(17) = 1.65, p > .10, nor the 60-item (M = .10, SE = .15), 1 <
1, length groups produced a sequence that matched the trained
sequence better than the foils. Only participants in the 50-item
condition had a significant recall score (M = 1.01, SE = .32),
1(18) = 3.16, p < .01, generating a matched subsequence to the
trained sequence of 3.89 items in length (SE = .30).

Nonspecific Learning and Performance Effects

Nonspecific learning was assessed by average cue velocity (or
time in seconds from the cue entering the screen to crossing the
target zone), which was adjusted adaptively during training, de-
pendent on the individual participant’s performance level. Cue
velocity, averaged over the first block, was 1.92 seconds (SE =
.01) across all conditions. The cue velocity increased in a linear

b. SISL Test (Trained - Naovel)
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Figure 2. Experiment 1 sequence-specific learning curve and test performance. Each training block consisted
of 750 trials separated by a short rest break. The learning curve (a) shows the gradual sequence learning
throughout training. The percent-correct difference is the difference between the percent correct on the repeating
sequence trials and the nonrepeating novel trials within a block. The percent correct difference at test (b) is the
percent correct difference between the trained sequence trials and the novel sequence trials. Error bars reflect the

standard error of the mean.
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fashion significantly across training, F(1, 72) = 261.08, p < .001,
m? = .78, and did not differ significantly across groups (see Table 1).

To assess whether participants’ error rates reflect sequential
dependencies (streaks of correct or incorrect responses), a proba-
bility ratio was calculated for each participant as the probability of
a correct response versus an incorrect response, following a correct
response. A ratio greater than one indicates that correct responses
tend to be followed by correct responses. The ratio was consis-
tently greater than one, and generally consistent among the 30-item
(M = 240, SE = .25), 40-item (M = 2.62, SE = .36), 50-item
(M = 1.96, SE = .12), and 60-item (M = 2.28, SE = .17) groups
on the trained test sequences, F(3, 72) = 1.35, p = .26. During
performance of foil sequences at test, the ratio was maintained
(M = 225, SE = .08), suggesting that this effect is a general
performance characteristic of the SISL task and is not associated
with sequence knowledge.

An analysis of the 10 individual motor operators was conducted
to compare the single- and double-keypress responses (prior
perceptual-motor sequence learning tasks have generally relied on
single-keypress response paradigms). A one-way ANOVA indi-
cated reliable differences in the performance rates across the 10
operators during SISL test trained sequence performance,
Greenhouse-Geisser correction, F(7.37, 552.62) = 13.92, p <
.001, m* = .16. Four of the possible double-button responses were
performed at higher rates (M = 58.55%, SE = 1.37%) than all
other possible responses: the index and middle finger combination
for both the left and right hands (DF and JK), as well as the two
index fingers (FJ) and two middle fingers (DK). Single-button
responses were performed better (M = 54.39%, SE = 1.52%) than
the other two double-button responses (DJ, FK; M = 50.47%,
SE = 1.91%). This same pattern of operator performance was also
present during the foil performance at test, and was present early
in training (averaged across performance during the first block),
indicating that this phenomenon is also a nonspecific performance
effect.

Experiment 1 Discussion

Participants were able to learn repeating sequences that were 30,
40, or 50 items long within a single training session. While only
marginal learning was observed of the 60-item sequences, the
single training session may have been too short to provide enough

Table 1
Mean (SE) Values
Trained
sequence Novel/foil
Sequence length performance performance Cue velocity

Last block of training

30 items 58.84% (1.94)  48.44% (2.39) 1.41 (0.10)
40 items 55.00% (3.31)  48.19% (2.66) 1.43 (0.07)
50 items 59.55% (1.78)  53.26% (2.97) 1.46 (0.07)
60 items 56.63% (2.01)  51.22% (2.07) 1.59 (0.06)
SISL test
30 items 53.08% (3.66)  42.08% (3.22) 1.36 (0.10)
40 items 59.93% (3.57)  52.48% (2.83) 1.40 (0.07)
50 items 57.84% (2.14)  52.99% (3.06) 1.40 (0.07)
60 items 55.74% (2.40)  54.04% (1.94) 1.54 (0.05)

repetitions of the sequence for reliable learning to emerge. Increas-
ing the complexity of the task to require a mix of single- and
double-button responses did not appear to interfere with partici-
pants’ ability to learn the embedded repeating sequences (com-
pared to previous reports). In addition to identifying reliable
sequence-specific learning, participants also exhibited task-based,
nonspecific performance effects such as higher performance on a
subset of the two-button response operators and a sequential de-
pendency effect, whereby correct responses tended to be followed
by additional correct responses. Participants performing the SISL
task sometimes experience performance streaks of correct re-
sponses, akin to the “hot hand” in sports (Gilovich, Vallone, &
Tversky, 1985). The enhanced performance for a subset of the
double-button responses may reflect a more general motor effect
for responses that depend on the same finger for both hands (index
finger for FJ, middle finger for DK) or two fingers from the same
hand (DF, JK), such as the motor overflow effect (Liederman &
Foley, 1987).

These results found sequence learning for much longer repeat-
ing sequences than have previously been studied, and the limita-
tion on the learnable length of a repeating sequence appears to
have been constrained by the 1-hr training session. To assess the
possibility that sequence learning was mainly constrained by train-
ing time, Experiment 2 extended the length of training across two
sessions and examined learning for even longer repeating se-
quences. Also, Experiment 1 found some evidence of explicit
knowledge, which may have been underestimated due to missing
the sensitive test of sequence recognition. Experiment 2 includes a
recognition test, as well as the recall test, to better assess explicit
awareness of very long sequences during training.

Experiment 2 Method

Participants

Fifty-eight undergraduates from Northwestern University re-
ceived course credit for participating. Two participants were re-
moved from the analyses due to a lack of performance during the
SISL test (not responding to over half of the trials), resulting in 56
participants (31 women, 25 men, M,,. = 18.9 years).

The SISL Task

The SISL task parameters used for Experiment 2 were identical
to those for Experiment 1, except for minor modifications to the
adaptive velocity parameters. In Experiment 2, performance was
assessed after each repetition of the trained sequence so that novel
sequence segment performance did not affect cue velocity. Perfor-
mance of 80% correct or better decreased the time-to-target by 50
ms, and performance 65 to 79% correct decreased the time-to-
target by 25 ms. Performance between 26 and 64% correct in-
creased the time-to-target by 25 ms, and performance 25% or
below increased it by 50 ms. Cue velocity at the end of training
determined the constant velocity during the SISL and recognition
tests. The training sequences and novel segments were constructed
following the guidelines from Experiment 1.

Procedure

Experiment 2 took place over two 1-hr sessions, separated by 48
hours. Participants were randomly assigned to a sequence length of
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60, 70, 80, or 90 items. Within each sequence-length group,
participants were randomly assigned to train on one of three
possible sequences. Before training, participants received 24 ran-
dom practice trials to familiarize themselves with the SISL task.
The training phase consisted of nine 675- or 700-trial blocks,
which were separated by self-terminated rest breaks; six blocks of
training were conducted on day one and three on day two. Training
was immediately followed by implicit and explicit tests of se-
quence knowledge. The 60- and 80-item sequence length condi-
tions used 700-trial training blocks with novel nonrepeating seg-
ment lengths of 15 and 20 items, respectively. The 70- and 90-item
sequence length conditions featured 675-trial training blocks with
novel segment lengths of 35 and 45 items, respectively. Novel
segments were included after every one or two trained sequence
repetitions to maintain a rate of 20% nonrepeating sequence trials.

The implicit SISL test was administered directly after training
(and a self-terminated rest break) and consisted of each of the three
sequences (trained sequence and two novel foils) performed four
times. After the implicit test, participants were made aware of the
repeated sequence during training and completed an explicit rec-
ognition test. During the recognition test, participants watched and
responded to five sequences—the three possible repeating se-
quences and two novel foils—and immediately rated each se-
quence on a scale from —10 (sure the sequence had not been the
trained sequence) to 10 (sure the sequence had been the trained
sequence) as to how likely it was that it had been practiced
initially, with O rated as unsure. Participants had the SISL training
and test structure explicitly explained to them so they understood
that they were attempting to recognize the sequence during train-
ing, not the sequences that appeared later, during the test phase.
Participants were then given a recall test during which they at-
tempted to recall as much of the trained sequence as possible in 30
responses, as in Experiment 1.

Experiment 2 Results

Sequence Training Performance

Sequence-specific learning during training, calculated as the
percent-correct difference between the sequence performance and
the novel segment performance during training, was analyzed with
a4 X 9 ANOVA of length condition (60, 70, 80, and 90 items) and
training block (see Table 2). There was a linear increase in
sequence-specific learning throughout training, F(1, 52) = 20.98
p < .001, m* = .24, such that by the end of training (averaged
across the last block) there was a significant difference between
the performance on the trained sequences (M = 60.76%, SE =
1.14%) and the novel segments (M = 55.75%, SE = 1.36%), F(1,
52) = 27.30, p < .001, 1 = .29. An interaction between
sequence-length group and block suggests that the groups did not
learn the same amount in each block, F(3, 52) = 4.97, p < .01,
m? = .17 (see Figure 3a). Less sequence knowledge was exhibited
by groups receiving longer sequences during training, F(1, 52) =
15.16, p < .001, n* = .22.

Implicit Sequence Knowledge Posttest

At test, the performance difference between the trained se-
quence and mean of the foil sequences was significant in the

Table 2
Mean (SE) Values
Trained
sequence Novel/foil
Sequence length performance performance Cue velocity

Last block of training

60 items 59.12% (2.43)  49.05% (3.09) 1.24 (0.09)
70 items 62.46% (1.42)  55.82% (2.56) 1.23 (0.08)
80 items 61.75% (0.97)  56.87% (2.23) 1.17 (0.05)
90 items 60.00% (3.17)  60.65% (2.18) 1.30 (0.07)
SISL test
60 items 63.24% (3.04)  55.24% (2.50) 1.24 (0.09)
70 items 61.84% (2.27)  52.18% (2.88) 1.23 (0.09)
80 items 66.78% (1.24)  60.73% (1.27) 1.16 (0.05)
90 items 61.02% (2.83)  59.57% (2.53) 1.29 (0.06)

60-item (M = 8.01%, SE = 2.69%), t(13) = 2.97, p < .05, 70-item
(M = 9.66%, SE = 1.88%), t(12) = 5.12, p < .001, and 80-item
M = 6.05%, SE = 1.41%), t(12) = 4.28, p < .01 conditions
(Figure 3b). However, the difference at test in the 90-item condi-
tion was not reliable (M = 1.46%, SE = 2.02%), t < 1. Across all
groups, performance was better for the trained sequence (M =
63.76%, SE = 1.26%) than the foil sequences (M = 57.04%, SE =
1.25%), F(1, 52) = 37.22, p < .001, T]2 = .37, but sequence-
specific knowledge decreased with increasing sequence length,
F(1,52) = 655, p < .05, m* = .11.

Explicit Sequence Knowledge Posttest

Participants provided higher confidence ratings to their
trained sequence (M = 2.72, SE = .66) than to the mean of the
foil sequences (M = —.25, SE = .32) during the recognition
test, F(1, 52) = 15.65, p < .001, nz = .23. There was neither
a main effect of sequence-length group nor an interaction effect,
Fs < 1. However, recognition rating did not correlate with
sequence performance on the implicit test, » = —.03. On the
recall test, participants were unable to generate a sequence that
matched the trained sequence (M = 3.29, SE = .10) reliably
better than the mean of the foil sequences (M = 3.17, SE =
.04), F < 1. This result was consistent across the four condi-
tions because there was no main effect of sequence length or an
interaction, F's < 1.

Nonspecific Learning and Performance Effects

As in Experiment 1, the cue velocity also increased linearly
across training, F(1, 52) = 431.71, p < .001, n* = .89, and the
variance between sequence length conditions was not signifi-
cant (see Table 2). The sequential dependency ratios were also
similar to Experiment 1. The ratio during trained sequence
performance at test (M = 2.07, SE = .07) did not vary across
sequence length conditions, F' < 1, and was slightly lower than
during foil sequence performance (M = 2.23, SE = .08),
1(55) = 2.70, p < .01, suggesting this effect was not sequence-
specific. The pattern of performance across the 10 motor oper-
ators in Experiment 2 was also similar to Experiment 1. The
same four double-button motor operators (DF, JK, DK, FJ)
were performed with a reliably higher accuracy rate (M =
66.93%, SE = 1.74%) than both the other double-button (M =
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Figure 3. Experiment 2 sequence-specific learning curve and test performance. Each training block consisted
of 675 or 700 trials separated by a short rest break. The learning curve (a) shows the gradual sequence learning
throughout training. The percent-correct difference is the difference between the percent correct on the repeating
sequence trials and the nonrepeating novel trials within a block. The gap between blocks 6 and 7 represents the
48-hr time delay between sessions. The percent-correct difference at test (b) is the percent correct difference
between the trained sequence trials and the novel sequence trials. Error bars reflect the standard error of the

mean.

58.49%, SE = 2.36%) and single-button operators (M =
57.53%, SE = 1.96%). This pattern of motor operator perfor-
mance was observed in the foil performance at test, again
indicating this was not a sequence-specific effect.

Experiment 2 Discussion

The results from Experiment 2 confirm that sequences of 60
to 80 items can be learned in two hours of training. While
learning was not robust for the 90-item sequences, it is not clear
whether this reflects a capacity constraint on implicit sequence
learning or simply the fact that even over two hours of training,
participants could not complete a sufficient number of repeti-
tions of the 90-item sequence. The SISL test results of Exper-
iment 2 are similar to those of Experiment 1 in that the
sequence-specific learning effects were reduced for longer se-
quences. However, with a fixed amount of training time, shorter
sequences repeated more often than the longer sequences during
training. Of particular note, the 60-item sequence was not
reliably learned in a single session in Experiment 1, but with
additional practice over two sessions, sequences of this length
were reliably learned. Participants also exhibited some recog-
nition memory for the long sequences practiced in Experiment
2. However, recall scores indicated that, unsurprisingly, partic-
ipants could not reproduce a substantial portion of these long
sequences. Due to the difficulty of memorizing an entire 60- to
80-item sequence (especially at the pace of the SISL task), it
seems likely that participants were recognizing short fragments
of the repeating sequence and that test performance did not
depend materially on explicit sequence knowledge.

The ability to learn these exceptionally long repeating sequences
poses a question of what knowledge participants have acquired. It
is possible the participants learned the entirety of the sequence as
a single element, but prior sequence-learning research has sug-
gested learning occurs in shorter chunks, such as three-item tri-
grams. In a typical 12-item SOC sequence, the trigram is the
smallest element that can be used to reliably predict the next cue.
Although the repeating sequences used here were constructed with
similar constraints, the 10 possible motor responses dictate that a
fully SOC sequence would be 90-items long, and shorter se-
quences could be learned with a combination of bigram and
trigram information. Although sequence-specific learning ex-
pressed at test decreased as sequence length increased, the current
analysis does not address whether the learning rate is slower for
longer sequences because the longer sequences were repeated less
frequently during training (but see below). If there is a limit to the
response contingencies that can be simultaneously learned, longer
sequences might be more challenging and learned more slowly.

Another method for creating this kind of challenge is to increase
the relative rate of the nonrepeating segments to make the task of
predicting the next sequence item more difficult. In Experiment 3,
participants trained on a traditional 12-item SOC sequence, but
with varying amounts of interspersed nonrepeating segments,
ranging from 20 to 80% of the training trials. If the statistical
learning mechanism is maintaining simple SOC statistics, the
conditions with increased amounts of nonrepeating segments
should be more difficult, because trigrams not embedded in the
repeating sequence will be occurring with much higher frequency,
making the sequence-specific statistics less predictable. In this
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case, the learning rate should be slower as the percentage of
nonrepeating segments increases.

Experiment 3 Method

Participants

Forty-seven undergraduates (16 women, 31 men, M,,. = 19.3
years) from Northwestern University received course credit for

participating.

The SISL Task

Only single-key responses (D, F, J, K) were used, and minor
visual changes were made to the SISL task. Cues scrolled down
from the top of the screen toward targets near the bottom of the
screen (closer to the keyboard) and a frame was placed around the
task. Feedback about performance was provided by a performance
meter on the left side of the cue-response area (correct and incor-
rect responses moved the meter by 2 pixels) and a score on the
right side of the cue-response area that increased with correct
responses (correct responses when the target was in the optimal
location yielded a larger score increase than when the target was
somewhat offset). The initial scrolling velocity was 10 degrees/s
(364 pixels/s) so that the cues would reach the target zone 1600 ms
after first appearing on the screen. The adaptive velocity followed
the same guidelines as Experiment 2, but was based on perfor-
mance after every 60 trials.

Procedure

Participants were randomly assigned to one of four “noise”
conditions (20, 40, 60, and 80% nonrepeating, novel segments
during training) and to one of three 12-item SOC training se-
quences. A timing sequence of short- and long-interstimulus in-
tervals (2.5 and 5 cue lengths, respectively) was embedded with
each sequence order and was the same (S-L-L-S-L-S-L-S-S-L-
L-S) for every sequence and noise segment iteration. Prior to
training, participants received 24 random practice trials to famil-
iarize themselves with the SISL task. Training consisted of six
480-trial blocks separated by self-terminated rest breaks, resulting
in 2880 trials of training. The training blocks were structured so
that training and nonrepeating novel segments were always pre-
sented in their entirety (all 12 trials in order) and were evenly
dispersed over every 60 trials. The novel segments never repeated
and were randomly selected from a list of unique 12-item SOC
sequences.

The five sequences chosen for the implicit and recognition tests
were selected in order to evenly distribute the amount of trigram
overlap between the sequences. All five sequences overlapped
each other by two to four trigrams (e.g., training sequences 1 and
2 both had the trigrams D-F-D and D-K-F). Reversals (e.g., D-F-D,
K-J-K) were also controlled for so that each sequence contained
between three and four reversals, so to minimize performance
consequences previously seen in the SRT task (Jiménez, Vaquero,
& Lupianez, 2006).

After training, participants received the same implicit sequence
knowledge test as in Experiments 1 and 2. The implicit test was
one 540-trial block consisting of 15 repetitions of each of the three

possible 12-item training sequences (trained sequence and two
foils). Sequences were presented in groups of five repetitions each
(60 trials). Sequence-specific performance improvements were
measured as the percent-correct difference between the mean per-
formance on the trained sequence and the mean performance on
the two novel sequences. The recognition test was administered as
it was in Experiment 2, and included the three possible training
sequences along with two completely novel, unseen SOC se-
quences. Each sequence was shown in one 24-trial block, which
consisted of two repetitions of the sequence. For the sequence
generation recall test, participants were required to make 24 motor
responses.

Experiment 3 Results

Sequence Training Performance

Sequence-specific learning, calculated as the percent-correct
difference between the repeating sequence performance and the
novel segment performance during training, was analyzed with a
4 X 6 ANOVA of noise condition (20, 40, 60, and 80%) and
training block (performance averaged every block). The sequence-
specific performance benefit increased gradually in a linear trend
throughout training, F(1,43) = 6.19, p < .05,m” = .11 (see Figure
4), so that by the end of training (averaged across the last block)
participants were reliably performing the trained sequence (M =
59.15%, SE = 1.24%) better than the novel segments (M =
53.90%, SE = 1.12%), F(1,43) = 19.19, p < .001, n*> = .28. The
main effect of noise condition, F(3, 43) = 12.13, p < .001, T]2 =
.25, reflects the fact that less sequence-specific knowledge was
expressed by participants in the higher noise conditions, which is
also seen in a reliable difference in performance on the final block,
F(1, 43) = 6.75, p < .05, > = .13.

Implicit Sequence Knowledge Posttest

At test, the 20% group exhibited the largest sequence-specific
benefit of 12.38% (SE = 2.90%), 1(11) = 4.27, p = .001, while the
40 and 60% groups also displayed significant learning (M =
9.91%, SE = 1.90%), t(11) = 5.22, p < .001; (M = 7.78%, SE =
2.12%), t(11) = 3.66, p < .01, respectively. The 80% group had
a positive sequence-specific performance increase (M = 3.51%,
SE = 2.10%), but the performance difference was not significant,
#(10) = 1.67, p = .13. Overall, participants performed better on
their trained sequence (M = 59.28%, SE = 1.65) than on the novel
foil sequences at test (M = 50.89%, SE = 1.29%), F(1, 43) =
53.21, p < .001, n* = .51, but the sequence-specific benefit
decreased as noise percent increased, F(1, 43) = 7.68, p < .01,
m? = .15.

Explicit Sequence Knowledge Posttest

Participants provided similar confidence ratings for the trained
sequences (M = 1.47, SE = .79) and the four foil sequences (M =
1.41, SE = .43) on the recognition test. A 2 X 4 mixed ANOVA
of sequence type (trained and foils) and noise condition (20, 40,
60, and 80%) found that these ratings did not vary across groups
or produce an interaction, Fs < 1, suggesting that participants
could not recognize the sequence they had practiced during train-
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Figure 4. Experiment 3 sequence-specific learning curve and test performance. Each training block consisted
of 480 trials separated by a short rest break. The learning curve (a) shows the gradual sequence learning
throughout training. The percent-correct difference is the difference between the percent correct on the repeating
sequence trials and the novel, nonrepeating sequence trials within a block. The percent-correct difference at test
(b) is the percent correct difference between the trained sequence trials and the novel sequence trials. Brackets

reflect the standard error of the mean.

ing. Participants did provide slightly lower confidence ratings to
the novel sequences that were not seen during the SISL test (M =
.98, SE = .58), but these ratings also did not differ from the ratings
given to the trained sequence. The sequences generated during the
recall test did not match the trained sequence (M = 4.11, SE = .17)
better than the foil sequences (M = 4.31, SE = .12), and there was
no main effect of sequence type, noise condition, or an interaction,
Fs < 1, suggesting that participants could not recall the sequence
they had learned.

Sequence-Independent Performance Effects

For all groups, the cue velocity increased linearly across train-
ing, represented as a decrease in the time (in seconds) for the cue
to reach the target, F(1, 43) = 301.81, p < .001, 1> = .87. There
was neither a main effect of noise condition nor an interaction,
Fs < 1. As seen in Table 3, the cue velocities differed at the end
of training, but this was not statistically significant. The sequential
dependency ratio remained consistent in Experiment 3, replicating
the performance effect that was in the previous two experiments.
If a participant gets a response correct, it roughly doubles the
likelihood that that person will get the next response correct. Also
in parallel with the previous experiments, the ratio during trained
sequence performance at test (M = 2.02, SE = .15) did not differ
from the ratio during foil performance (M = 1.96, SE = .07), t < 1.

Experiment 3 Discussion

Participants were able to learn the embedded repeating se-
quences even when most of the responses that they made were to
nonrepeating (noise) trials. Significant learning was observed in

conditions in which 20, 40, and 60% of the training trials consisted
of novel, nonrepeating SOC segment trials. There was some weak
evidence for learning in the 80% condition as well, and it is
possible that the embedded repeating sequence may simply not
have been repeated enough during training to obtain reliable
sequence-specific learning. Although the 12-item SOC training
sequences were much shorter than the sequences used in the first
two experiments, participants did not develop explicit knowledge
of the sequence on which they exhibited performance improve-
ments. The procedure used in Experiment 3 was similar to that
used in Sanchez et al. (2010), which also produced a dissociation
between explicit sequence knowledge and implicit performance.
In Experiment 3, as the amount of novel, nonrepeating segments
during training increased across groups, the trained sequence per-

Table 3
Mean (SE) Values
Trained
sequence Novel/foil
Noise condition performance performance Cue velocity
Last block of training
20% 58.03% (0.97)  48.70% (2.15) 1.19 (0.06)
40% 60.13% (2.42)  53.73% (2.37) 1.20 (0.10)
60% 60.68% (2.35)  55.93% (2.47) 1.17 (0.09)
80% 57.77% (1.21)  57.24% (1.87) 1.33(0.11)
SISL test
20% 5431% (4.36)  41.92% (2.44) 1.19 (0.06)
40% 59.67% (2.59)  49.77% (2.69) 1.19 (0.11)
60% 62.55% (3.08)  54.77% (2.32) 1.16 (0.10)
80% 60.61% (2.78)  57.10% (2.85) 1.32 (0.10)
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formance during the SISL test decreased, suggesting less
sequence-specific knowledge had been obtained. However, in all
three experiments, the more challenging conditions of longer se-
quences or higher amounts of novel training trials also led to the
embedded repeating sequence being repeated less often, so that test
performance does not reflect learning rate as a function of expe-
rience with the repeating sequence. A key question about the
mechanism that implicitly extracts sequential information is
whether the rate of sequence learning is reduced in the more
challenging conditions. For the longer sequences, there are poten-
tially more critical interitem statistics to track. The longer se-
quences provide the opportunity to assess whether participants
were learning only partial fragmentary elements of the longer
sequences. For example, if participants were constrained by ca-
pacity to only learning up to 15 trigrams (an arbitrary capacity, for
the sake of argument), they would learn half of the 30-item
sequence, but only one sixth of the 90-item sequence. Performance
during the repeating sequence at test would then incorporate a
relatively larger number of unknown elements for longer se-
quences, leading to a smaller performance difference reflecting the
lesser learning.

Likewise, for the higher noise conditions in Experiment 3, the
novel segments during training make the statistics less predictable
by increasing the rate of irrelevant contingencies, potentially pos-
ing a difficult problem for a simple statistical Bayesian learning
mechanism of relative trigrams. For example, if the training se-
quence contained the trigram D-F-J, a mechanism could learn to
predict J by noting that it follows the D-F pair with a much higher
probability than either D or K. However, the novel segments
during training contained the fragments D-F-D, D-F-J, and D-F-K
at the same rates, reducing the ability to predict J within the
repeating sequence following D-F. This would lead to a lower
learning rate for a mechanism simply using Bayesian learning of
probabilities up to SOC.

Learning rates as a function of trained repetitions of the se-
quence were not specifically presented in Experiments 1-3. The
question of learning rate as a function of practiced repetitions is
presented here as an analysis across all three experiments to
emphasize commonalities in learning performance across experi-
ments.

Operating Characteristics Across Experiments 1-3

Across the three experiments reported here, there were 12 ex-
perimental conditions in which learning was measured. For each
condition, sequence learning was estimated by the average perfor-
mance difference between the trained repeating sequence and
novel foils during the posttraining test. Motor learning rate is
generally considered nonlinear with practice, following an expo-
nential or power learning curve (see, Heathcote, Brown, & Me-
whort, 2000; Newell & Rosenbloom, 1981). Log-linear learning
curves have been classically reported in the acquisition of motor
skills (Crossman, 1959), and sequence learning has been shown to
increase as a function of repetitions practiced (Karni et al., 1995).
Therefore, it was hypothesized that the amount of sequence learn-
ing would be strongly related to the logarithm of the number of
trained sequence repetitions. In addition, a thirteenth group was
added (see Table 4 for the data used) based on learning rate
information from Sanchez et al. (2010). No adjustments were

Table 4
Mean (SE) Values
Sequence
Experiment repetitions SISL test score
Experiment 1
30 item 80 11.00% (1.99)
40 item 60 7.45% (2.43)
50 item 48 4.86% (2.07)
60 item 40 1.71% (1.54)
Experiment 2
60 item 81 8.01% (2.69)
70 item 72 9.66% (1.88)
80 item 63 6.05% (1.41)
90 item 54 1.46% (2.02)
Experiment 3
20% 192 12.38% (2.90)
40% 144 9.91% (1.90)
60% 96 7.78% (2.12)
80% 48 3.51% (2.10)
Sanchez, Gobel, & Reber (2010) 192 10.11% (1.84)

made based on the variability among conditions such as sequence
lengths, number of keypresses for each motor response, the percent
of nonrepeating sequence trials during training, and/or cue veloc-
ity.

Despite differences in these experimental variables, perfor-
mance improvements were remarkably consistent across learning
conditions. A regression analysis of the logarithm of practiced
repetitions (Reps, ) by SISL test performance revealed sequence
repetition to account for a significant amount of the variance
across groups, F(1, 11) = 22.67, p < .001, b = .13 (SE = .03),
adjusted R* = .64 (see Figure 5). Reps, ,, predicted performance
better than using the linear count of sequence repetitions, adjusted
R* = .51, or sequence length, adjusted R* = .21. A model using
sequence length in addition to Reps; ,, was not a better predictor,
adjusted R* = .61, than just the Reps; ., model, F' < 1, and did not
improve the quality of the fit.

Bigram Analysis for Extended Sequences
(Experiments 1 and 2)

With 10 possible responses, the sequences used in Experiments
1 and 2 that were shorter than 90 items in length were not fully
SOC. All 90 potential bigrams (two-item pairs) cannot be fully
represented in the sequences from 30 to 80 items long, making a
certain proportion of bigrams unique to the trained sequence.
Many of these trained bigrams recurred in the foils at test and
provide a unique opportunity to examine bigram-level learning in
these two experiments. The degree to which the bigrams recurred
in the foils related directly to sequence length. For 30-item se-
quences, an average of 12.3 of the sequence bigrams were unique
and 17.7 (59%) recurred in one or more of the foils. For the
60-item sequence conditions, 88% of bigrams also occurred during
foil sequences (and for the 90-item sequence, all bigrams occur in
targets and foils). Bigram performance was measured by assessing
the percent correct of the second item in a particular bigram,
because the second item is the response that is able to be statisti-
cally predicted (e.g., performance for bigram D-F was determined
by correct responding to F).
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Across all participants in all conditions in Experiments 1 and 2,
bigram-specific performance was compared when the participant
was performing the bigram during the trained sequence and the foil
sequences. Performance was reliably higher for the same bigram
occurring in the trained sequence (M = 59.70%, SE = 1.03%) than
during a foil sequence (M = 54.32%, SE = 1.02%), t(131) = 6.70,
p < .001, indicating that participants learned statistics that were
more complex than simple bigrams (bigram-level learning would
lead to similar performance of the same bigrams regardless of
context). However, in Experiment 1, performance of the recurring
bigrams during foil sequences can also be compared to completely
novel bigrams that were present during foil sequence performance
(the longer sequences in Experiment 2 leave few novel bigrams).
Participants performed reliably better on the bigrams that also
occurred in the repeating sequences (M = 52.1%, SE = 1.47%)
than on completely novel bigrams (M = 49.9%, SE = 1.46%),
1(75) = 3.45, p < .001, indicating that there was some learning at
the bigram level as well.

To assess the impact of bigram learning on overall learning rate,
the cross-experiment regression comparing learning rate and the
log of the number of repetitions was repeated with an additional
predictor variable reflecting the percentage of the trained sequence
that contained unique bigrams. Both variables, Reps, ,, and pro-
portion of unique bigrams, contributed significantly to predicting
the learning rate, s > 3.46, ps < .01, and the adjusted * for the
overall fit was .82, suggesting that bigram learning likely contrib-
uted materially to sequence performance at test.

Discussion

Sequence-specific performance improvements increased loga-
rithmically with each repeated performance of the sequence, seem-
ingly independent of sequence length or surrounding novel seg-
ments during training. Although this analysis shows that learning

rate is roughly similar across all conditions, careful examination of
Figure 5 suggests that the learning rates observed in Experiments
1 and 2 may actually be slightly higher than Experiment 3. Of note,
because of the 10 possible operators, sequences less than 90 items
long were not fully SOC sequences and, therefore, participants
appear to have benefitted from learning first-order conditional
information (bigrams). Clearly, participants were also learning
higher-order conditionals (and longer fragments), because longer
sequences with less bigram-specific information were learned as
well. The similarity in learning rate between sequences of very
different lengths (30-item and 70-item, 40-item and 80-item) also
indicates that the number of probabilities or fragments to be
learned does not affect the learning rate. Increasing sequence
length or irrelevant training trials does not lead to a slower learning
rate, as might be expected with a simple statistical learning mech-
anism that is challenged by tracking many conditional probabilities
(in long sequences) or discriminating predictive probabilities from
surrounding noise.

A relatively simple statistical learning mechanism, such as one
that learns bigrams and trigrams with practice, as in the SRN
(Cleeremans & McClelland, 1991), can capture this result as long
as there is enough representational capacity to track all the statis-
tics. However, this type of mechanism should be impaired by the
conditions in Experiment 3, where increasing the amount of noise
would lead to slower learning. One possibility for the constant
learning across noise conditions is that participants extract even
higher-order statistics, such as third- or fourth-order conditionals.
There are so many unique third- or fourth-order fragments that the
repeating sequence may make the predictable relationships dis-
criminable from the noise. This type of learning comes at the cost
of representing these higher-order conditionals, a potential expo-
nential increase in the information necessary to track. Evidence for
optimal statistical representations has been previously reported
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(Orbén, Fiser, Aslin, & Lengyel, 2008), and Remillard (2008,
2010) has reported motor sequence learning of up to sixth-order
conditional probabilities after many hours of training, suggesting a
large representational capacity. The similarity in learning rate
across conditions in Experiment 3 suggests that third-order condi-
tional learning may emerge even within the first hour of training.

General Discussion

Experiments 1 and 2 showed that the implicit sequence learning
memory system is capable of learning sequences that far exceed
the lengths that have been previously examined. Additionally,
Experiment 3 showed that learning of a repeating sequence occurs
even when irrelevant trials outnumber the relevant training se-
quence trials. Across all three experiments, learning rate was found
to be an exponential function of training repetitions, suggesting
that the number of practiced repetitions is the best predictor of
learning and more important than sequence length or amount of
irrelevant practice (nonrepeating segments) during training. This
consistent learning rate across sequence lengths, number of motor
operators, and number of training sessions may provide some
constraints into the current theories of how memory development
and consolidation operates in implicit perceptual-motor sequence
learning. These results not only provide further evidence that
implicit sequence learning persists across procedural variations
(Chambaron, Ginhac, & Perruchet, 2006), but that it also persists
at a constant rate independent of nonsequence specific parameters.
This learning capability has been considered an important part of
implicit statistical learning in domains from visual perception to
language; associations will be identified as long as there are
regularities in the environment (Fiser & Aslin, 2002; Saffran,
2003). The explicit memory system, in contrast, has difficulty with
the acquisition and expression of knowledge in conditions where
the regularities are not common enough to be consciously identi-
fied (Jiménez et al., 2000).

The absence of slowed learning due to sequence length may be
another contrast of differential operating characteristics between
implicit and explicit memory. In the effortful memorization of long
lists of information, a list-length effect (Gronlund & Elam, 1994)
is observed where the amount of information acquired is reduced,
reflecting a bandwidth constraint on explicit memory acquisition.
This type of effect predicts that participants would have a difficult
time memorizing and retrieving the entirety of the very long
sequences used in training here. Although it may have been con-
founded by the preceding implicit knowledge test, the sensitive
recognition test used here would not necessarily have been af-
fected by this explicit memory effect because it is only necessary
to recognize a small fragment to exhibit above chance perfor-
mance.

Identifying functional differences in the operation of these two
kinds of memory may provide a better understanding into the basis
of memory than attempts to simply dissociate the neural systems.
Patient findings have shown dissociable systems, but in healthy
participants both systems are operational and some awareness of
the repeating sequence typically develops (Willingham, Greeley,
& Bardone, 1993). This has generated an extended debate over the
degree to which sequence knowledge is partly or completely
unavailable to conscious awareness (Perruchet & Amorim, 1992;
Shanks & St. John, 1994; Song, Marks, Howard, & Howard, 2009)

and also how the two memory systems may potentially interact.
While implicit and explicit sequence knowledge are capable of
developing in parallel (Willingham & Goedert-Eschmann, 1999),
the relationship of sequence recognition to procedural performance
is not necessarily advantageous (Song et al., 2009), suggesting a
potentially complicated interaction between these memory sys-
tems.

In fact, the learning process in the SISL task may reflect a
combination of both response-sequence learning (as seen in the
SRT task) and a contribution from perceptual learning analogous
to that seen in the contextual cuing paradigm (Chun & Jian, 1998).
In the SRT task, items are presented individually and with a set
response-to-stimulus interval, which extends the time between
stimuli. However, in the SISL task, numerous stimuli are shown on
the screen at a time (typically 4 to 5 cues) and this visuospatial
array may influence the statistical dependencies used for learning.
The possibility of combining complex perceptual learning with
serial response sequence learning may contribute to the ability to
learn long sequences (Experiments 1 and 2) and resist interference
from the nonrepeating noise segments (Experiment 3). Prior stud-
ies that have examined the knowledge acquisition characteristics
of implicit sequence learning mechanisms have used very exten-
sive training protocols (Remillard, 2008, 2010; Remillard & Clark,
2001), up to around 20,000 trials of practice over 10 sessions.
Those results support the idea that the implicit sequence learning
mechanism can acquire high-order knowledge, but suggests it is
acquired very slowly and laboriously. The current results extend
this previous work by finding relatively sophisticated learning
occurring within the first hour or two of training. The combination
of perceptual and sequential information in the SISL task is com-
mon in real world skill acquisition (e.g., playing a song from sheet
music) and may indicate that SISL is a good model task of this
process.

The SISL task also elicits behavioral characteristics that may be
relatively specific to certain kinds of sequence learning tasks, such
as the sequential dependency in response accuracy. The sequential
dependency (“hot hand”) may reflect the initial elements of a kind
of “flow” state (Csikszentmihalyi, 1990), which has been reported
in highly expert skill performance (Chen, 2007; Ericsson & Ward,
2007). In Experiments 1 and 2, during which responses were
frequently made with multiple fingers, evidence for a motor over-
flow effect was observed (Armatas & Summers, 2001; Armatas,
Summers, & Bradshaw, 1994; Liederman & Foley, 1987) that
likely reflects a SISL-specific performance characteristic. Despite
the performance effects, the sequence-specific learning component
persisted at a relatively constant log-linear rate.

The sequence learning component of the SISL task is believed
to rely on corticostriatal circuits connecting the basal ganglia and
motor cortex, which have been shown to be critical for supporting
learning with the SRT task (e.g., Ashe, Lungu, Basford, & Lu,
2006; Doyon, 2008). While corticostriatal loops connect most
areas of cortex to the basal ganglia (Middleton & Strick, 2000),
each of these circuits are much less complex (Houk & Wise, 1995)
than the entirety of the medial temporal lobe memory system. This
relative simplicity suggests the possibility of constraints on the
amount of information that can be processed and stored for im-
plicit learning relative to explicit learning. The lack of a capacity
constraint on learning that was observed here might suggest a
complex kind of learning during SISL similar to the contextual
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cueing phenomenon that occurs implicitly but appears to depend
on the hippocampus (Chun & Phelps, 1999; Greene, Gross, Els-
inger, & Rao, 2007). A neuroimaging study of SISL observed
changes largely in cortical regions reflecting reduced activity for
practiced sequences (Gobel, Parrish, & Reber, 2011). Increased
activity was also observed in the ventral striatum and not the
medial temporal lobe, although the lack of activity differences
cannot definitively indicate the lack of involvement of a region.
These behavioral results open a large area of future work that
can provide insight into the cognitive neuroscience of implicit
sequence learning. The learning rate consistency across procedural
variations suggests a possible homogeneity within implicit se-
quence learning mechanisms. Motor sequence learning develops
through a multitude of connections with the basal ganglia, through-
out cortical regions such as the motor, parietal, and frontal cortex,
as well as with connections to the cerebellum (Ashe et al., 2006;
Doyon et al., 2009; Doyon, Penhune, & Ungerleider, 2003; Hiko-
saka et al., 1999; Hikosaka, Nakamura, Sakai, & Nakahara, 2002;
Penhune & Doyon, 2005). The SISL task also incorporates timing
with order in interception responses (Gobel, Sanchez, & Reber,
2011) which may recruit other areas as well (Bosco et al., 2008;
Gobel, Parrish, & Reber, 2011); yet all of these disparate mecha-
nisms operate together and are likely to be responsible for the
characteristics of sequence learning seen with this task.
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