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Memory systems theory argues for separate neural systems supporting implicit and expli-
cit memory in the human brain. Neuropsychological studies support this dissociation, but
empirical studies of cognitively healthy participants generally observe that both kinds of
memory are acquired to at least some extent, even in implicit learning tasks. A key ques-
tion is whether this observation reflects parallel intact memory systems or an integrated
representation of memory in healthy participants. Learning of complex tasks in which both
explicit instruction and practice is used depends on both kinds of memory, and how these
systems interact will be an important component of the learning process. Theories that
posit an integrated, or single, memory system for both types of memory predict that expli-
cit instruction should contribute directly to strengthening task knowledge. In contrast, if
the two types of memory are independent and acquired in parallel, explicit knowledge
should have no direct impact and may serve in a ‘‘scaffolding’’ role in complex learning.
Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-train-
ing instruction on skill learning and performance was assessed. Explicit pre-training
instruction led to robust explicit knowledge, but sequence learning did not benefit from
the contribution of pre-training sequence memorization. The lack of an instruction benefit
suggests that during skill learning, implicit and explicit memory operate independently.
While healthy participants will generally accrue parallel implicit and explicit knowledge
in complex tasks, these types of information appear to be separately represented in the
human brain consistent with multiple memory systems theory.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Neuropsychological research has provided abundant
and strong evidence for separate implicit and explicit
memory systems in humans (Reber, 2008). Conscious, ex-
plicit memory that is dependent on the medial temporal
lobe (MTL) memory system can be dissociated from impli-
cit memory that influences behavior from outside of
awareness (Squire, 2004). This neuropsychological dissoci-
ation may be reflected in the curious inability of experts to
verbally communicate the basis of their skill acquired from
extensive practice. However, unlike laboratory memory
studies, complex skill learning is not acquired in a pro-
cess-pure manner; both explicit instruction and practice
are important parts of acquiring expertise. To understand
the neurocognitive basis of skill learning, it will be neces-
sary to identify the role of both memory types and also
their interaction in learning complex tasks.

Theories of the interaction between implicit and expli-
cit knowledge depend critically on a detailed model of
the underlying representations of these types of memory.
Theories that focus on separate neural systems for implicit
and explicit knowledge have typically argued for indepen-
dent operation (Reber & Squire, 1994, 1998; Stark & Squire,
2000; Willingham, 1998) or even competitive interactions
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(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Poldrack
& Packard, 2003) between memory systems. However,
studies of healthy participants have frequently been inter-
preted as supporting a memory model based on a single, or
tightly integrated system (Cleeremans & Jiménez, 2002;
Shanks, 2005; Shanks & Perruchet, 2002) in which explicit
awareness may be a property of the memory strength or
quality of implicit representations. These two approaches
make very different predictions about how the course of
skill learning should be reflected in human memory. With
independent systems, the direct role of explicit knowledge
in skill learning should be a modest one, possibly just pro-
viding initial guidance to help establish a practice regime –
effectively acting as a ‘‘scaffold’’ for the subsequently
trained procedure (Petersen, van Mier, Fiez, & Raichle,
1998). Over subsequent practice, implicit learning mecha-
nisms would then be responsible for honing and refining
execution. With a single or integrated memory system
model, expertise arises from a transformation of the expli-
cit knowledge into a state that can support later rapid, ex-
pert performance. This model is similar to theories of
automaticity that posit that increasing the strength of a
memory should generally benefit performance and lead to-
wards automation, without regard to the representational
form of the memory being acquired (e.g. Logan’s Instance
Theory, 1988). In this case, effects of initial explicit knowl-
edge should generally be visible throughout the course of
learning since this is part of the eventual underlying expert
knowledge representation.

Examination of the performance of skilled experts pro-
vides some evidence for separate representations of mem-
ory. For instance, when preparing for a performance,
expert musicians describe very distinct processes to
‘‘learn’’ to play a piece and to ‘‘memorize’’ the score con-
sciously (Chaffin, Logan, & Begosh, 2009). Overshadowing
effects have also been reported that describe conditions
in which explicit cognition can harm the expression of
skilled performance (Beilock, Carr, MacMahon, & Starkes,
2002; Flegal & Anderson, 2008), suggesting that the two
types of memory arise from separate, possibly competing,
sources. However, the idea of deliberate practice (Ericsson,
Krampe, & Tesch-Römer, 1993) is important in skill learn-
ing, in which an emphasis is placed on explicit instruction
and top-down control to achieve optimal performance. The
importance of explicit knowledge reflected in deliberate
practice suggests less independence between memory
types and a more active role for explicit memory than sim-
ply scaffolding. In this case, explicit knowledge may pro-
vide more direct support for skilled performance by
allowing for the correction or alteration of learned move-
ments in order to prevent arrested development and/or
to enhance the level at which movement automation
occurs.

The neuropsychological studies that support the disso-
ciation between memory systems seen in patients with
neurological damage do not rule out the possibility that
these types of memory may operate differently when the
neural systems are fully intact (e.g., in cognitively healthy
adults). For example, there may be two systems that nor-
mally operate in a tightly linked fashion, like the two eyes
that move together, except in cases where dysfunction
might cause them to become uncoupled (Perruchet & Gal-
lego, 1993). Complete system integration has been sug-
gested by Shanks and colleagues (Shanks, 2005; Shanks &
Perruchet, 2002; Shanks & St. John, 1994) who argue for
a unitary memory framework whereby a single, largely ex-
plicit system supports all learning. The dynamic frame-
works model by Cleeremans and Jiménez (2002)
describes a model of tightly-integrated representations in
which explicit and implicit cognition are aspects of a single
set of underlying neural mechanisms. In this approach, cer-
tain low-level mechanisms (weight-learning) operate out-
side of awareness but complex symbol manipulation
operates on the same basic information with explicit
awareness. The commonality across these unitary frame-
works that distinguish them from multiple systems models
is that both skill instruction and performance are sup-
ported by a shared and singular underlying memory
representation.

In the single-system theoretical accounts, implicit
learning cannot be fully dissociated from explicit learning
because experience leads to increased knowledge in a
common representational store (in healthy participants).
From this perspective, it is argued that dissociations
among tests of implicit and explicit knowledge appear
due to characteristics of the particular test measures used
to assess implicit or explicit memory (see, Shanks et al.,
1994). Implicit memory tests are thought to be more sen-
sitive to low levels of information, leading to occasional
observations of implicit knowledge without explicit
knowledge. A key prediction of this general approach is
that there should always be evidence for explicit knowl-
edge whenever implicit learning is observed because this
explicit knowledge significantly contributes to task perfor-
mance. In healthy participants, this finding is generally ob-
served. Across implicit learning paradigms, some memory
for the learning context is almost always observed, and
even when a subset of participants exhibit implicit knowl-
edge without explicit memory, a sizeable percentage of
participants typically exhibit both (Sanchez, Gobel, & Re-
ber, 2010; Shanks & Johnstone, 1999; Willingham, Greeley,
& Bardone, 1993), raising questions of test sensitivity.

However, the existence of explicit memory after prac-
tice is consistent with both theoretical approaches. The in-
tact MTL memory system in healthy participants may be
acquiring explicit memory during practice that does not
actually contribute directly to performance. Under a model
of separate, independent systems, this explicit memory
will accrue in parallel (Song, Marks, Howard, & Howard,
2009; Willingham & Goedert-Eschmann, 1999) and
although it does not improve skilled performance, it sup-
ports performance on post-training tests of explicit knowl-
edge. Of note, this approach counter-intuitively implies
that the human brain acquires task-relevant knowledge
(e.g., explicit memory) that is not applied to current perfor-
mance. This idea, plus the rhetorical point that a single sys-
tem model is a more parsimonious explanation, has been
used to argue in favor of a single or tightly integrated
model of memory use (Shanks et al., 1994). However, the
organization of human memory systems may reflect
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neurobiological and information processing constraints
(e.g., Attalah, Frank & O’Reilly, 2004; Henke, 2010) that
are not yet well perfectly understood.

A key question for understanding the role of implicit
and explicit knowledge in complex cognition, such as skill
learning, is to determine whether explicit knowledge infor-
mation contributes directly to learning to perform or
whether it reflects concomitant knowledge in a separate
representational system that is epiphenomenal to task per-
formance. This is a difficult question and most prior studies
have attempted to address this by looking for process-pure
demonstrations of robust implicit learning in the total ab-
sence of explicit memory. As noted by Merikle (1994) and
Dienes and Berry (1997), the challenge of proving process-
purity in implicit learning may be essentially impossible
(but see a subsequent overview in Dienes, 2012). This
has led these attempts to generally not be definitive (with
the process-dissociation procedure of Destrebecqz &
Cleeremans, 2001, probably coming closest).

Here we take an alternate approach to this question by
providing participants with abundant explicit knowledge
prior to engaging in an otherwise implicit learning task.
In a single-system model (or tightly coupled representa-
tions), the acquisition of task-relevant information in
either implicit or explicit form should lead to better perfor-
mance on the task because there is a shared underlying
representation of sequence knowledge. Thus, anything that
contributes to or strengthens knowledge should improve
performance, especially on the relatively sensitive implicit
memory test. Alternately, if implicit and explicit learning
lead to completely separate representations, then increas-
ing one will not automatically lead to an increase in the
other or in general memory measures. If there are two
independent representations, then explicit knowledge
may only contribute to the MTL-dependent representa-
tions that contribute to performance on recognition or re-
call tests, but not produce any impact on the implicit
learning process that depends on brain regions outside
the MTL.

This approach was previously examined in Reber and
Squire (1998) where healthy participants were instructed
about the explicit sequence in a Serial Reaction Time
(SRT) task at the very beginning of training, but exhibited
no benefit on sequence-specific reaction time performance.
However, this effect was only observed during the first 60
trials (�30 s to 1 min) of practice, and in other studies se-
quence-specific reaction times have been shown to be en-
hanced when implicit training is accompanied by explicit
knowledge (e.g., Curran & Keele, 1993; Frensch & Miner,
1994; but also see Mathews et al., 1989 for a similar ap-
proach with artificial grammar learning). The structure of
the SRT task is that it could potentially be performed en-
tirely on the basis of explicit knowledge, e.g., as a predic-
tion task about where the next cue will appear rather
than a reaction to the cue onset. Thus, a benefit of explicit
knowledge on performance does not necessarily imply ex-
plicit knowledge affects implicit knowledge, but could in-
stead reflect switching to a consciously driven strategy.
The same difficulty in characterizing strategy use has been
noted in tasks of visual categorization, with the difficulty
of determining participant strategy without additional
information such as neuroimaging data (Reber, 2009; Re-
ber, Gitelman, Parrish, & Mesulam, 2003).

For the current study, we use the recently described Se-
rial Interception Sequence Learning (SISL) task (Sanchez
et al., 2010), which is closely related to the SRT task in that
perceptual cues are used to guide participants through a
covertly embedded sequence of responses. In the SISL task,
however, participants observe a moving cue and attempt
to time a motor response to the arrival of the cue over a
target region. This changes the task from being based on
wait-and-respond to a more continuous performance task
that is a better analog of real-world performance tasks
thought to be influence by implicit learning (e.g., physical
skills, music performance, language processing). An impor-
tant difference from the SRT task is that SISL task perfor-
mance is assessed by whether the correct response was
made at the appropriate time to a continuous stream of
cues, resulting in a binary hit-or-miss response to each
item (measured as percent of correct responses). Se-
quence-specific learning is assessed in the SISL task in a
similar manner to the SRT task with performance during
the embedded repeating sequence contrasted with perfor-
mance during an unfamiliar sequence. This provides a
measure of implicit learning which occurs without explicit
knowledge in some participants, in the same kind of partial
dissociation (Sanchez et al., 2010) seen with the SRT task,
but with a higher percentage of participants exhibiting this
effect.

This type of partial dissociation can be accommodated
by a single or integrated system model by hypothesizing
that the participants who only exhibit implicit knowledge
had some covert explicit knowledge and simply failed to
express it on the explicit test, or that these same partici-
pants simply had a weaker form of the underlying knowl-
edge. To better contrast between hypotheses about
representations, rather than continuing to search for evi-
dence for the complete absence of explicit knowledge, here
we examine the contribution of high levels of explicit
knowledge to performance. Before beginning practice, par-
ticipants were given full explicit knowledge about the
repeating sequence, i.e., they are told the precise order
and relative timing between cues in order to anticipate
and guide the sequence of responses they will have to
make during task performance. If participants are able to
bring this explicit memory to bear on performance, they
should exhibit further increases in accuracy of responding
for the repeating sequence. If performance improvements
are based on an integrated memory representation, then
the addition of relevant explicit (E) knowledge to repeated
implicit (I) learning trials would predict a benefit of this
instruction, (E + I) > I. Alternately, if participants are gener-
ally unable to benefit from additional explicit knowledge,
this suggests that the two types of memory are relatively
encapsulated such that, (E) + (I) = I.

The pre-training instruction approach also mimics the
methods by which skill learning is typically taught: expli-
cit instruction about the procedure followed by repetitive
practice. The current paradigm uses the SISL task as a
model of skill learning for this purpose. However, since
the SISL task is one that allows for direct implicit learning
by cuing the motor responses of the repeating sequence
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with perceptual information, unlike most skill learning,
performance does not absolutely depend on initial
pre-training instruction. This makes it possible to contrast
implicit (I) learning with implicit plus explicit (I + E)
learning, because there is no need for explicit pre-instruc-
tion to guide initial performance, unlike many physical
skills (e.g., juggling). If the two memory systems operate
independently then no performance advantage will be
seen for the explicit pre-training instruction condition
(I + E) compared to an implicit learning condition (I) with-
out the additional explicit instruction. Under a single
memory system or tightly integrated systems model, the
addition of explicit memory should raise the total amount
of available information and produce an improvement in
performance.

To test whether explicit pre-training instruction leads
to enhanced learning and performance on an implicit skill
learning task, a group of participants were explicitly in-
structed on the embedded repeating sequence prior to SISL
practice. Based on preliminary data suggesting that explicit
knowledge can be difficult to retain over the course of
training, additional explicit instruction was also provided
halfway through practice. In contrast to traditional skill
instruction methods whereby the learner may be provided
with explicit rules or algorithms to guide performance, the
explicit instruction provided here was the specific se-
quence of repeating actions that were to be learned. Both
forms of instruction require explicit memory, but the
instruction used here was designed to provide exactly
the most relevant explicit knowledge for the task to best
see how it might affect implicit learning and performance.
Learning in this group of participants was compared to a
control group who learned under traditional incidental
learning conditions. In addition to comparing learning
across groups, explicit memory for the repeating sequence
was assessed after practice to verify that the pre-training
instruction manipulation produced high levels of explicit
sequence knowledge. If sequence knowledge relies on a
shared implicit and explicit (I + E) knowledge representa-
tion, or if the representations between memory systems
interact in a beneficial manner, participants in the explicit
condition should exhibit a benefit during the SISL training
and in the post-training test.
Fig. 1. The Serial Interception Sequence Learning (SISL) task. Circular cues
scroll down the computer screen toward target rings at the bottom.
Participants attempt to intercept circles as they cross the target rings by
pressing the corresponding keyboard button. For example, this partici-
pant just responded with an F keypress, and would be readying responses
for D, then K, then F. The colored bar within the performance meter
increases for every correct response and decreases for every incorrect
response and the score increases based on the accuracy of correct
responses.
2. Method

2.1. Participants

Thirty-one undergraduate students at Northwestern
University received course credit for participation. Two
participants from each condition were removed from the
data due to cessation of responding leading to unusually
low performance during SISL test blocks, leaving 27 partic-
ipants in the final analysis (19 female, Mage = 18.48 years).
The SISL task is similar in format to popular rhythm music
games (e.g. Guitar Hero, Tap Tap Revenge), so participants’
video game experience was assessed. Participants were
familiar with popular video games of the same format
(i.e. rhythm games) and one participant reported regular
play.
3. Materials

3.1. The Serial Interception Sequence Learning (SISL) task

Participants observed circular cues scrolling vertically
down a monitor in one of four horizontal locations towards
corresponding yellow target rings located near the bottom
of the screen (Fig. 1). Beneath each ring was a letter (D, F, J,
or K) indicating which keyboard button corresponded to
each of the locations. Participants were instructed to make
a keypress response when a cue overlapped a target ring.
Responses were considered correct if the appropriate key
was pressed while the cue was within one cue-length of
the target ring (half a cue length on either side of the prop-
er target location), so that the initial window for a correct
response was approximately 140 ms. A response was con-
sidered incorrect if the key was pressed while the cue was
outside of the acceptable response window, if the wrong
key was pressed, or if more than one keypress was made
within a single target response window. For direct re-
sponse feedback, incorrect responses caused the corre-
sponding target ring to flash red, and if a response was
correct, the target ring flashed green and the cue disap-
peared. A performance meter located on the left side of
the screen increased in size by about 1% for each correct re-
sponse and decreased in size for each incorrect response. A
numerical score box on the right side of the screen dis-
played a number that increased with each correct re-
sponse. The performance meter and score were indicative
of performance, providing participants with constant
feedback.

The cues moved down the screen with an initial velocity
of 12.6�/s, reaching the target zone 850 ms after appearing
on the screen (time-to-target). To maintain a reasonable
level of task difficulty and reduce ceiling effects, the per-
centage of correct responses was assessed after every 30
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trials during training and the cue velocity was adjusted
accordingly. When performance was at 85% correct or
higher, the time-to-target decreased by 3.2% and when
performance was between 70% and 84%, the time-to-target
decreased by 1.6%. Conversely, when performance was be-
tween 26% and 69% correct, the time-to-target increased
by 1.6% and if performance was 25% or lower the time-
to-target increased by 3.2%. Time-to-target never increased
above 1200 ms.

Unbeknownst to participants, the cue order followed a
repeating sequence that was 12 cues in length for 80% of
the training trials, while 20% of the trials were novel, non-
repeating sequences. All sequences were constructed fol-
lowing second-order conditional (SOC) structure (see Reed
& Johnson, 1994). SOC structure restricts cues from
repeating (e.g. D–D) and prevents paired cues (e.g. K–D)
from appearing more than once per sequence, making a
trigram (e.g. D–K–F) the smallest statistically predictable
structure. All sequences were selected from a pool of
256 unique 12-item SOC sequences and were not repeated
for any participant during the experiment. In addition to
the repeated order of the cues, the cues within the se-
quence followed a specific interval pattern of short and
long inter-stimulus intervals (ISIs). The ISIs were either
2.5 or 5 cue lengths, respectively. The ISIs adjusted with
the velocity of the task, such that the ISIs remained a
constant visual distance (2.5 or 5 cue lengths) throughout
the task.

3.2. Procedure

Participants were randomly assigned to either an expli-
cit pre-training instruction condition, in which they at-
tempted to memorize their 12-item sequence before the
SISL training, or to an implicit knowledge condition, in
which they were not told about the repeating sequence.
In the explicit condition, participants were allowed to
watch (without responding) as their repeating sequence
scrolled down the screen five times prior to training, and
were instructed to memorize the sequence. Additionally,
a static image of the 12-item repeating sequence was dis-
played on the left side of the screen, with each of the cor-
responding response letters (D, F, J, K) overlaid on the
circles. This allowed the participant to see the sequence
in its entirety, along with the corresponding responses,
while watching the sequence scroll down the screen in or-
der to achieve a robust explicit representation of the
repeating sequence. This portion was self-paced as partic-
ipants were allowed to press the spacebar every time they
wanted to view the sequence scroll down the screen, and
were allowed as much time as they needed to encode
and memorize the sequence. In order to ameliorate forget-
ting, half-way through SISL training participants watched
their sequence scroll down the screen five more times,
but without the static image during pre-training instruc-
tion. They were also notified that their repeating sequence
would not always be present during training. Participants
in the implicit condition did not receive the verbal
explanation or instruction and were not given the opportu-
nity to view their sequence, as to be kept naïve to the
repeating sequence. To familiarize themselves with the
task prior to SISL training, all participants completed a
short demonstration of the SISL task, which included 24
random cues.

The training portion of the SISL task contained six 480-
trial blocks which consisted of 384 trials of the repeating
sequence and 96 novel, unrepeated SOC trials. Therefore,
participants received 192 sequence repetitions during
training (32 repetitions per block). The blocks were con-
structed such that a novel sequence appeared once per
60 trials, or four repetitions of the trained sequence for
one presentation of a novel sequence. Novel sequences
during training never repeated, and were not used as foils
during the implicit or explicit knowledge tests. In between
blocks, participants were offered a 15 second break that
could be bypassed by pressing the space bar.

A 540-trial test block followed directly after training,
with no indication that it was different from the preceding
training blocks. The test block consisted of 15 repetitions of
the trained sequence along with 15 repetitions each of two
novel SOC sequences. The test block was structured so that
every 60 trials (five sequence repetitions) represented per-
formance on one of the three sequences, and the order of
sequence presentation was randomized. The SOC se-
quences assigned to training and test were completely
orthogonal so that no sequence shared any of the same tri-
grams. For example, if D–F–K appeared in one sequence,
the other two sequences would not contain this trigram,
but would instead have D–F–D or D–F–J. Implicit knowl-
edge of the trained sequence was assessed by comparing
percentage correct performance on the trained sequence
to performance on the novel sequences.

Upon completion of the SISL task, participants in the
implicit condition were informed that a repeating se-
quence was present in the task they had just completed.
All participants then completed a recognition test to assess
their explicit recognition knowledge of their trained se-
quence. The recognition test was the first explicit test
administered – directly after the SISL task – because it
has been shown to be highly sensitive to explicit knowl-
edge in perceptual-motor sequence learning tasks (e.g.
Willingham et al., 1993). For the recognition test, partici-
pants performed the SISL task with their trained sequence
and four completely novel SOC sequences separately. Each
sequence was presented in a 24-trial (two-repetition)
block and participants were asked to consider whether or
not the sequence they had just performed was the repeat-
ing sequence from the training trials. Participants rated
their confidence on a scale from 10 (absolutely was the se-
quence) to �10 (absolutely not the sequence).

Lastly, participants completed an explicit recall task in
which they saw only the yellow target rings on the screen
and were instructed to generate the repeating sequence
using the keyboard buttons. The recall test ended after a
participant entered 24 responses. Recall knowledge was
assessed by identifying the longest matching subsequence
between the participant’s response and the trained se-
quence. To assess baseline recall knowledge, the generated
sequence was also compared to the remaining 201 novel
SOC sequences (of 256, 55 had already been used for novel
training sequences and tests) and the average matching
subsequence was calculated.
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4. Results

Sequence-specific learning was calculated as the per-
centage correct difference between SISL performance on
the trained sequence and the foil sequences across training
and analyzed with a mixed 2 � 6 ANOVA of condition
(explicit, implicit) and training block (one through six). A
linear increase in sequence-specific performance across
training was found, F(1,25) = 28.33, p < .001, such that both
groups exhibited a trained sequence performance advan-
tage during the last training block (explicit, M = 14.96%,
SE = 2.71%; implicit, M = 13.39%, SE = 2.14%; ts > 5.53), but
there was neither a main effect of condition nor an interac-
tion effect (Fs < 1), suggesting both groups learned at sim-
ilar rates. A mixed 2x2 ANOVA of condition (explicit,
implicit) and sequence type (trained, foils) at test revealed
a main effect of sequence type, F(1,25) = 21.34, p < .001, as
participants performed the trained sequence (M = 63.33%,
SE = 1.27%) significantly better than the novel sequences
(M = 53.65%, SE = 1.98%). However, there was no main ef-
fect of condition, nor an interaction (Fs < 1), indicating that
sequence-specific performance improvements were not
different between the explicit instruction (M = 9.32%,
SE = 3.29%) and implicit (M = 10.10%, SE = 2.63%) condi-
tions (Fig. 2).

Not only was the effect of explicit knowledge on SISL
performance minimal, but the explicit group actually dem-
onstrated a slightly lower sequence-specific performance
advantage at test (Cohen’s d = �.08). The small decrease
in the sequence-specific performance advantage seen in
both groups between the last training block and test likely
reflects the fact that the foil sequences repeat during test,
as opposed to being completely novel during training,
and small learning effects for the foils may occur. Despite
this difference, the correlation between the trained se-
quence performance advantage at the end of training and
during test is very high, r = .65, suggesting that these mea-
sures are reliable estimates of implicit learning.

The sensitive recognition test revealed that healthy par-
ticipants in both conditions were capable of recognizing
the trained sequence, F(1,25) = 75.54, p < .001. Participants
in the explicit condition gave slightly higher ratings to the
trained sequence (M = 8.08, SE = .80) and lower ratings to
Fig. 2. Sequence-specific performance benefits across SISL training and test. Th
difference between the trained sequence and foil sequences at test show no dif
the foil sequences (M = �2.88, SE = 1.25) compared to par-
ticipants in the implicit condition (M = 7.50, SE = .64;
M = �1.46, SE = 1.06, respectively), but these differences
did not reach significance (interaction and main effect of
condition, n.s.). On the recall test, there was a main effect
of sequence type, F(1,25) = 27.53, p < .001, and condition,
F(1,25) = 17.06, p < .001, and an interaction, F(1,25) =
12.42, p < .01 – indicating that the sequences generated
by the explicit instruction participants matched the
trained sequence (M = 9.54, SE = .87) better than the foil se-
quences (M = 4.54, SE = .19), as compared to the partici-
pants in the implicit condition (trained, M = 5.36,
SE = .64; foils, M = 4.38, SE = .13). Thus, the explicit instruc-
tion led to a large effect (Cohen’s d = 1.35) on the ability for
participants to recall the trained sequence in the explicit
group. A clear summary of the implicit and explicit test
scores can be seen in Table 1.

Potential performance effects of explicit knowledge
were additionally assessed by post hoc sorting participants
into groups based on levels of explicit knowledge demon-
strated at test. When participants were post hoc sorted
into high- and low-recognition groups based on the med-
ian of the recognition score in the explicit (Mdn = 12.50)
and implicit (Mdn = 9.00) conditions, there were no signif-
icant main effects or interactions (n.s.), showing that the
ability to recognize the sequence was not correlated with
performance (r = �.02). In addition, seven of the 13 partic-
ipants in the explicit condition displayed robust explicit
knowledge and were capable of recalling the entirety of
their 12-item trained sequence, but this did not lead to
better sequence-specific performance at test (M = 7.94%,
SE = 4.90%).

Cue velocity, measured as time-to-target, increased in a
linear trend throughout training, F(1,25) = 32.66, p < .001,
such that the time-to-target at test was 790 ms
(SE = 30 ms) and did not differ between conditions (inter-
action and main effect of condition, n.s.).

5. Discussion

Participants developed robust explicit sequence knowl-
edge as a result of the explicit instruction, but this did not
lead to better performance on the trained sequence during
e learning curve across the six training blocks and the percentage correct
ference between the explicit instruction and implicit conditions.



Table 1
SISL, recognition, and recall test results. The SISL scores reported are the percent correct performance for the trained sequence and foil sequences at test, for
both training conditions (implicit, explicit). Recognition test values are confidence ratings (from +10 to �10) to trained and foil sequences provided by
participants in regards to how likely they believed the current sequence was the sequence during training. Recall values represent the longest matching
subsequence of the generated sequence to the trained and foil sequences.

SISL Recognition Recall

Sequence Foils Sequence Foils Sequence Foils

Implicit 63.81% (1.64) 53.71% (3.01) 7.50 (0.64) �1.46 (1.06) 5.36 (0.64) 4.38 (0.13)
Explicit 62.82% (2.02) 53.59% (2.66) 8.08 (0.80) �2.88 (1.25) 9.54 (0.87) 4.54 (0.19)

Mean (SEM).
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learning or test. Even for the seven participants (of 13) in
the explicit instruction condition who could recall the en-
tirety of the trained sequence, no advantage in perfor-
mance was observed. These participants had complete
explicit knowledge of the repeating sequence, plus the
same amount of practice as the participants who learned
the sequence in typical implicit learning conditions. How-
ever, this increase in the total amount of knowledge held
by the participants led to no additional performance
advantage. The absence of an advantage of very strong
explicit knowledge suggests that SISL test performance is
driven almost entirely by implicit learning gained during
practice.

Although participants in the incidental (implicit) group
also exhibited a tendency to acquire some concomitant ex-
plicit sequence knowledge of the repeating sequence, the
participants with much higher levels of explicit knowledge
did not exhibit an advantage on the implicit test. This likely
reflects the common finding that healthy participants often
acquire incidental explicit knowledge of the trained se-
quence during implicit perceptual-motor sequence learn-
ing (Willingham et al., 1993). This reported lack of
correlation between performance on implicit and explicit
tests is frequently found (e.g., Gobel, Sanchez, & Reber,
2011; Sanchez & Reber, 2012; Sanchez et al., 2010), and
has been suggested to support generally independent
operation of the two types of memory (Song, Howard, &
Howard, 2007; Willingham & Goedert-Eschmann, 1999).
Occasionally an association between the two measures of
memory has been reported (Perruchet & Amorim, 1992),
which has been used to support the idea of a common
knowledge representation. The inconsistency of this find-
ing may indicate that there are experimental or individual
factors that affect both types of memory (e.g., vigilant
attention to the task) which does not necessarily imply a
single or integrated memory. If the relationship between
explicit and implicit knowledge test scores reflected inte-
gration of information across memory types during skill
learning, it should be consistently observed.

Although multiple memory systems theory accounts for
the results found here based on the encapsulation of mem-
ory representations, theories that posit a singular memory
representation for both implicit and explicit knowledge
cannot easily account for the lack of any benefit from expli-
cit pre-training instruction. Under a shared representation
approach, increasing the total amount of knowledge (I + E),
should increase performance. Strict unitary frameworks
(e.g., Shanks, 2005) would suggest that robust explicit
knowledge that is demonstrable through a recall test (as
shown here) represents an enhanced sequence memory
strength, which should have benefited the sensitive impli-
cit memory test. Likewise, if explicit knowledge can arise
from weaker underlying implicit representations and,
when provided, can possibly negate the need for direct
experience (Jiménez, Vaquero, & Lupiáñez, 2006; following
Cleeremans & Jiménez, 2002) then it would have been ex-
pected to find enhanced sequence-specific performance
during the SISL task in the explicit condition. However,
the current results found that significantly robust explicit
knowledge did not benefit the trained sequence
performance.

With an approach based on integrated representations,
it might still be argued that there is an important issue
regarding the applicability of knowledge, along the lines
of ‘‘transfer appropriate processing’’ (e.g. Blaxton, 1989).
However, the requirement that one type of knowledge
must be transferred in order to be applicable to another
task depends on an assumption that there are multiple
kinds of information that can be differentially applied
across tasks. That assumption implies a framework that in-
cludes multiple types of knowledge in the same manner as
the multiple memory systems theory, as recently noted in
Henke (2010). A theory that requires transfer of memo-
rized explicit sequence knowledge to task performance,
as found here, is making the same assumption that there
are separate representations for knowing what to do and
how to do it. In multiple memory systems theory, the rep-
resentation for explicitly knowing what to do is based on
the MTL memory system for facts and events while implicit
knowledge of how to perform is based on a separate mem-
ory system, such as cortico-striatal learning mechanisms of
the basal ganglia (Doyon et al., 2009). A single-system the-
orist might posit that both types of information are accu-
mulated within a single system that has different kinds
of representations that apply to performance versus expla-
nation. However, this form of ‘‘single system’’ model has
become nearly indistinguishable from a multiple memory
systems model (different types of memory in a single sys-
tem versus different types of memory in separate systems),
except for the fact that the neural basis of this kind of
memory is not specified in the ‘‘single-system’’ model.

A key remaining point of theoretical difference could lie
in the character of the information acquired of each type.
In the multiple memory systems theory, the practice-based
performance memory is entirely implicit while conscious
verbalization of the sequence is explicit; representative of
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separate underlying memory systems with unique operat-
ing characteristics. Alternately, a theory of multiple kinds
of knowledge within a single system suggests that the
knowledge acquired through explicit instruction is differ-
ent than the implicit knowledge acquired through practice.
However, explicit knowledge may also emerge from the
implicit practice-based knowledge as well, as the memory
strengthens, implying multiple kinds of memory for
acquiring similar knowledge. This model gives up the core
rhetorical arguments in favor of a single system: parsi-
mony and rationality. The multiple memory systems the-
ory predicts two types of memory that differ in neural
bases and have operating characteristics matched to how
they are used (performance versus explanation). Account-
ing for the results reported here with a single system and
the idea of ‘‘knowledge transfer’’ requires postulating one
type of memory for conscious memorization and a sepa-
rate type of memory that acquires both implicit and expli-
cit memory based on practice. Comparing these
approaches, the multiple memory systems model is both
more parsimonious and consistent with the neuroscientific
findings about the operation of memory across separate re-
gions of the brain.

Our finding that explicit pre-training did not benefit
learning rate or test performance was obtained using our
relatively novel, fast-paced SISL task. Although explicit
instruction of the sequence was administered in a manner
to encourage use of explicit sequence knowledge to the
task as much as possible, the non-contribution of the expli-
cit knowledge may indicate that applying explicit knowl-
edge is a slower process than applying implicit
knowledge. The instruction provided to participants went
to some length to be sure that it was in exactly the format
needed to relate to SISL performance. The visual stimuli
and pacing of cues were displayed precisely as they were
at the beginning of the training protocol, and the visual
representation of the sequence in its entirety allowed par-
ticipants to develop a representation of the sequence in
components and as a whole. During sequence instruction,
participants were fully aware of the response characteris-
tics of the following SISL task, to the extent that they
understood the response mapping of keys/fingers to the
on-screen cues and were allowed to use any strategy of
their choosing in order to develop explicit knowledge.
Although participants did not respond to the cues during
explicit instruction, participants were allowed to mime or
move their fingers along with the cues in order to map
the motor response to the instructed sequence. The partic-
ipants are essentially told exactly what they will need to
do during the SISL task, but even individuals with perfect
subsequent recall of the sequence exhibited no advantage
from this information. This result contrasts with previous
findings of an explicit knowledge benefit to sequence-spe-
cific performance (Curran & Keele, 1993; Frensch & Miner,
1994), but these previous studies utilized the SRT task
which requires reaction time responses compared to the
interception responses required here.

The task demands of the SISL task feature key differ-
ences from the SRT task that has been highly studied as a
model of implicit learning, in spite of the fact that both
depend on implicit learning of a covertly embedded se-
quence. The SRT task is based on reaction time – a response
is made as rapidly as possible after waiting for the onset of
a cue. While learning in the SRT task is often implicit, when
participants are also consciously aware of the sequence,
they could potentially anticipate the next motor response
and produce extremely rapid responses entirely based on
explicit memory. Thus, the implicit RT performance bene-
fits can become dominated by explicit anticipation and
planning strategies. When there is one behavioral response
and two potential internal processes for producing this re-
sponse, it can be extremely difficult to make a reverse
inference about how each process contributed to the
behavioral response (also noted in Moisello et al., 2009).
The SISL task removes anticipatory planning effects by
requiring continuous performance and by displaying
numerous upcoming cues on the screen simultaneously.
The difficulty of this problem is not isolated to sequence
learning tasks, and has also been noted in studies of visual
categorization in which healthy participants might use
either an implicit or explicit strategy that can only be dis-
tinguished with methods like functional neuroimaging
that examine internal activity (Reber, 2009). Identifying
the multiple brain systems that support category learning
has been made possible by the development of tasks that
strongly favor one system over another (Ashby & Maddox,
2005) and neuroimaging studies identifying the neural cor-
relates of these systems (Nomura & Reber, 2008) that are
guided by cognitive models of each process (Ashby et al.,
1998).

The SRT task has been an excellent tool for exploring
mechanisms of implicit learning, but the core structure of
the task does not effectively capture the kind of online pro-
cessing that reflects the role of implicit learning in tasks
like language processing (e.g., Perruchet & Pacton, 2006)
or motor plan execution. The SISL task is a continuous per-
formance task that requires precisely-timed responses and,
therefore, provides a better model of increasing fluidity
and accuracy of skilled performance following repetition.
These features may also contribute to learning depending
more exclusively on implicit memory systems, e.g., if expli-
cit memory operates more slowly in general and is difficult
to apply in a rapid, continuous task. The fact that SISL al-
lows for a more process-pure examination of implicit
learning makes it particularly suitable for examining possi-
ble interactions between implicit and explicit learning. We
do not feel, however, that this limits the finding of inde-
pendence in the operation of implicit and explicit memory
to the SISL task. Tasks that depend on rapid online process-
ing such as language comprehension or visual categoriza-
tion (object recognition) are thought to reflect implicit
processes because we ‘‘just know’’ that a sentence is gram-
matical or an object is a face without access to the under-
lying computations that led to that inference. In
experimental paradigms where participants are presented
with a stimulus and given time to draw the inference, it is
possible that the response made could depend solely on
either implicit or explicit processing (and averaging across
participants would look like an interaction between mem-
ory types). Only a task like SISL can be used to show the
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clear distinction between increasing explicit knowledge
and task performance that indicates that the two kinds of
knowledge are separate in the human brain.

This unique dissociation found with the SISL task does
not imply that explicit instruction is not necessary for
learning real-world skills, but demonstrates the unique
contributions of different knowledge representations to
skill acquisition. The role of explicit knowledge appears
to primarily be for initially planning an action sequence
in order to support the gradual and covert repetition-based
learning in the implicit system, which eventually takes
over support for performance. During skilled performance,
an internally-generated motor plan is executed, but it is
nearly impossible to separate the contributions of explicit
and implicit knowledge to the actual movement perfor-
mance. Here, it was found that by making the planning
stage redundant with rapidly-paced cues that were pre-
sented with multiple visible on the screen simultaneously,
that performance gains were completely dependent on im-
plicit learning based on practice. This suggests that explicit
knowledge serves the unique role of allowing the internal
planning of a motor response, such as during the recall test
when a participant must consciously generate the 12-item
motor sequence.

This contrast in the proposed contributions of explicit
and implicit memory representations fits with the theory
of motor control whereby explicit knowledge is proposed
to be responsible for motor planning (Tubau, Hommel, &
López-Moliner, 2007), as opposed to the actual movement
execution stage. Allowing for planning time has been
shown to have an effect in RT based tasks (Perlman, Pothos,
Edwards, & Tzelgov, 2010), and this contrast has also been
demonstrated with real world golf experts, such that when
they were given a new tool (‘funny putter’) additional time
was absorbed during the motor planning, not execution,
stage (Beilock, Bertenthal, Hoerger, & Carr, 2008). This
internal motor planning concept is more commonly under-
stood as a form of knowledge flexibility or top-down con-
trol. Explicit knowledge affords a flexible use of the
underlying knowledge representation such that it may
help recover from a break in the associative chain that im-
plicit knowledge is dependent on. For example, when there
is a failure in the chain of procedural movements support-
ing the performance of a musical piece, an expert must re-
call an explicit retrieval cue in order to keep performing
the correct action sequence (Chaffin et al., 2009). This rein-
forces the idea that the representations of explicit and im-
plicit knowledge are distinctly utilized for different roles in
skill learning, and also that utilizing both forms of informa-
tion simultaneously requires an integration of these
sources that the participants here were unable to
accomplish.

While the SISL task lends itself to examining explicit
and implicit memory contributions separately, a question
might be raised whether more complex skill learning tasks
might lead to a greater contribution of explicit knowledge
during practice. It has been suggested that multiple mem-
ory systems can be recruited during the learning of motor
sequences (Albouy et al., 2008; Ghilardi, Moisello, Silvestri,
Ghez, & Krakauer, 2009), and the idea of deliberate practice
(Ericsson et al., 1993) in expertise implies an important
role for explicit, top-down processes even at high levels
of performance excellence (Yarrow, Brown, & Krakauer,
2009). However, there have been several reports that ex-
plicit knowledge can actually interfere with the expression
of skilled knowledge (Beilock et al., 2002; Flegal & Ander-
son, 2008) suggesting that memory system interactions
may not be cooperative in these cases either. The scaffold-
ing model (Petersen et al., 1998) is consistent with a role
for explicit memory in usefully directing practice even
though the benefits of repetitive practice may depend en-
tirely on implicit learning mechanisms. In this case, as
mentioned above, explicit knowledge is useful for directly
planning a movement, such as preventing the improper
form or arm movement in a golf swing (i.e. deliberate prac-
tice). This top-down control in preventing improper move-
ments is extremely important because performance gains
are typically considered to be a function of repetitions
practiced (Heathcote, Brown, & Mewhort, 2000; Newell &
Rosenbloom, 1981; Sanchez & Reber, 2012), and practicing
a sub-optimal sequence likely leads to sub-optimal perfor-
mance. What this model suggests is that both types of
knowledge are important for skill learning, but the two
types of knowledge serve unique roles and exist as sepa-
rate representations based in multiple memory systems.

The same interplay between memory systems likely oc-
curs in the acquisition of cognitive skills, even though the
action sequences for a cognitive skill may be more abstract
and less dependent on perceptual cues to drive motor re-
sponses. Similarities between perceptual-motor skills and
cognitive skills have been observed previously (Rosen-
baum, Carlson, & Gilmore, 2001) and sequential learning
has been observed in problem solving tasks (Reber &
Kotovsky, 1997). Computational models of skill learning
such as ACT-R (Anderson & Lebiere, 1998) have a theory
of interactions between explicit knowledge (declarative
chunks) and implicit processing (production rules) as a
major architectural element. The ACT-R model proposes a
specific form of interaction between memory types with
production rules compiled from explicit knowledge, as in
learning following instruction. Further improvements in
speed and accuracy could reflect modification of produc-
tion rule firing parameters that would appear to be an im-
plicit learning process. It is not entirely clear how ACT-R
would capture the phenomenon of learning without
awareness observed in SISL since this would appear to re-
quire development of new production rules for sequential
performance without explicit sequential knowledge. The
CLARION model (Sun, Slusarz, & Terry, 2005) also directly
examines interactions between explicit and implicit
knowledge in skill learning, although the focus of this
model is on bottom-up learning of action-oriented knowl-
edge (procedural) that is separate from, but contributes to
later, declarative learning. Either of these modeling ap-
proaches could be used to naturally extend the results here
to more cognitive tasks using an approach where initial
performance is guided by explicit, top-down processes fol-
lowed by gains from repetition based entirely on bottom-
up, implicit learning.

The results here are consistent with a multiple memory
systems theory that supports the scaffolding model of skill
learning (e.g., Petersen et al., 1998). In this model, explicit
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memory initially guides performance during the learning
of physical and cognitive skills, but as practice accrues, im-
plicit learning that operates separately and in parallel
eventually comes to take over support for rapid, expert
performance. In the SISL task used here, the perceptual
cues replace the initial explicit scaffolding. In skill learning
outside the laboratory, this is usually provided by instruc-
tion, but here the perceptual cues allow for performance
largely dependent on implicit learning. Under these condi-
tions, even very strong and accurate extra explicit se-
quence knowledge provided no benefit to enhancing
motor skill performance during practice, consistent with
our hypothesis that these types of memory are separate
and distinct. In contrast, memory systems theories that
rely on a single system require an alternate model of skill
learning whereby practice leads to the transformation of
explicit knowledge into a more efficient form. This ap-
proach predicts that additional explicit knowledge would
improve performance. The lack of a performance benefit
due to explicit sequence knowledge found here argues
against this single-system transformation model and in-
stead demonstrates that implicit and explicit memory de-
pend on separate mental representations that affect
behavior independently. The inability to utilize the extra
explicit knowledge available implies that these indepen-
dent knowledge representations interact in limited ways,
suggesting that although both explicit and implicit knowl-
edge contribute materially to the normal development of
expertise, these separate and encapsulated memory repre-
sentations serve unique and distinct roles in skill
acquisition.
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