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Learning of complex motor skills requires learning of component movements as well as the sequential
structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants
learned a sequence of precisely timed interception responses through training with a repeating sequence.
Following initial implicit learning of the repeating sequence, functional MRI data were collected during
performance of that known sequence and compared with activity evoked during novel sequences of actions,
novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed
bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in
evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor
planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill
learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial
prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many
prior studies of perceptual–motor skill learning have found increased activity in motor areas of the frontal
cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity
observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is
predominantly expressed through more accurate performance rather than decreased reaction time.
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estern.edu (P.J. Reber).

l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

Skilled motor performance frequently requires executing a
sequence of actions with a specific pattern of timing between the
individual movements. Studies of the neural basis of learning action
sequences have tended to focus on tasks in which participants learn
sequences of actions that can be performed increasingly quickly (e.g.,
Orban et al., 2010; Poldrack et al., 2005; Willingham et al., 2002).
However, in many motor expertise domains in the real world, the
relative timing among component actions is critical and must be
maintained even as the overall speed of behavior increases. For
example, the timings between actions are critical for expert
performance in athletics and music. Of note, especially in athletic
skilled performance, performers are often unable to explicitly
describe the sequences they are expressing, suggesting a strong
contribution of implicit sequence knowledge.

We have recently used a new perceptual–motor sequence learning
task, Serial Interception Sequence Learning (SISL), to examine the
integration of action order and timing information in implicit sequence
learning (Gobel et al., 2011). The SISL task is similar to the familiar Serial
Reaction Time (SRT) task (Nissen and Bullemer, 1987; Robertson, 2007)
in using perceptual cues to guide a series of motor responses in which a
repeating sequence is covertly embedded. However, instead of simply
making a four-alternative forced choice (4-AFC) response as quickly as
possible (as in the SRT task), in SISL, the action cues are moving on a
display and participants must time their motor response to coincide
with the arrival of the cue in a target zone. Our prior research (Sanchez
et al., 2010) has found that implicit sequence learning occurs rapidly
during SISL practice and with low levels of concomitant explicit
sequence knowledge. In Gobel et al. (2011), participants learned a
repeating sequence of actions separated by a specific pattern of inter-
item timing. Participants exhibited no subsequent transfer to the task
withanembedded sequence thathad anewtimingpatternbut the same
order, nor any transfer to an embedded sequence with the same timing
but random order. This result implies that the representation of the
learned sequence obtained from SISL practice is based on tight
integration of action order and timing information.

Research that has examined the contribution of inter-item timing to
sequence learning using the SRT task has found partial integration of
timing informationwith order information—a correlated timing pattern
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had a beneficial effect on performance in (and only in) the presence of
an ordinal sequence—and observed partial transfer when order was
maintained but timing was disrupted (O'Reilly et al., 2008; Shin and
Ivry, 2002). These results suggest that while timing informationmay be
secondary to order information, there may be separate representations
or learning mechanisms for learning timing and order during SRT
practice. This idea is supportedby the report of Sakai et al. (2002),which
reported separate neural correlates associated with learning of action
order (precuneus, right intraparietal sulcus) and timing order (right
cerebellum) sequences, albeit under explicit conditions. Sakai et al.
(2002) also found that activity in the left intraparietal sulcus increased
to either kind of sequence and that several brain regions exhibited
increased activity specifically to sequences containing both order and
timing information:medial and lateral premotor cortex anddorsolateral
prefrontal cortex. This pattern of results suggests that there may be
separate learning mechanisms and also regions that integrate informa-
tion from both sources.

The report of Sakai et al. (2002) did not directly implicate the basal
ganglia in sequence learning or integration, although the basal
ganglia, particularly the putamen, have been frequently implicated
in neuroimaging studies of sequence learning (e.g., Peigneux et al.,
2000). A review of sequence and motor adaptation studies by Doyon
et al. (2009) suggested a model in which the basal ganglia and
reciprocal circuits connecting to cortical regions support motor
sequence learning. In this model, motor adaptation is supported by
cerebellar and cortico-cerebellar circuits. While Sakai et al. (2002)
reported increased cerebellar activity during learning of a repeated
sequence of timing intervals, incorporating timing information into an
integrated action sequence might still depend on the basal ganglia. A
study of patients with Parkinson's disease (PD) and patients with
cerebellar lesions (Shin and Ivry, 2003) found that the PD patients,
who have impaired basal ganglia function, were unable to integrate
action order and timing information in sequence learning. The
patients with damage to the cerebellum showed neither order nor
timing sequence learning.

None of the studies to date have looked at the neural correlates of
an implicit sequence learning task in which precise timing of
responses is intrinsic and essential to performance. After learning a
repeating sequence of actions with embedded timing via the SISL task,
Gobel et al. (2011) found no transfer to conditions that selectively
changed the order nor the timing. While this implies a fully integrated
representation of order and timing, it is possible that the demand
characteristics of the task could mask the expression of order-only or
timing-only information (since both are necessary for successful
performance). Here, fMRI is used to examine neural changes
associated with sequence learning from SISL practice and neural
activity associated with transfer to conditions where the action order
or timing pattern were independently altered. The current study is
also the first to report the changes in neural activity associated with
sequence learning in a task where learning is marked by increasingly
accurate performance instead of increasingly rapid responding. This
element of the SISL task avoids some prior concerns that the reported
neural correlates of learning may be influenced by the faster reaction
time that is the consequence of improved performance resulting from
learning as examined in Orban et al. (2010).
Methods

Participants

Eighteen healthy, right-handed adults (7 male, 11 female) of mean
age 24 years (range 19–28) were recruited from the Northwestern
University community and Chicago area for participation in this study.
All participants gave informed consent according to protocol
approved by the Northwestern University Institutional Review
Board and underwent neuroimaging safety screening. After the
experiment, all participants were compensated for their time.

Procedure

SISL task
The basic procedure of the Serial Interception Sequence Learning

(SISL) task (Fig. 1A) is described in Gobel et al. (2011). Participants in
the fMRI scanner viewed a screen image projected onto a mirror
mounted to the head coil and were given four button boxes to operate
with their middle and index fingers of each hand. A target zone was
visible as four dashed gold circles (with a diameter of 10% of the
screen height) centered on a horizontal 80% from the bottom of the
screen. Each button box was assigned to one of the target zones, from
left to right. Filled blue circular cues, of the same size as the targets,
scrolled up the screen at constant velocity. Cues took 2000 ms from
cue appearance at the bottom of the screen to being centered in the
appropriate target, after which they continued to scroll for an
additional 500 ms to the top of the screen. Participants were simply
instructed to press the corresponding button when a cue was
centered in its target. A trial, defined as the passage of a cue through
its target, was scored as correct if the appropriate button was pressed
when the cue was closer to the target zone than any other cue. Only
one cue would pass through the target zone at any one time, but three
or four other cues were scrolling toward the target zone simulta-
neously. Incorrect responses, multiple responses, and non-responses
were scored as errors. When any button was pressed (correct or
incorrect), the corresponding target flashed green briefly as visual
feedback. Differential feedback, such as disappearing cues following
correct responses, was not provided to minimize any confound of
visual input (which would influence neural activity related to visual
processing) during periods of better or worse performance.

As in the SRT task, the appearance of the cues followed a repeating
sequence of which participants were not informed. Sequence-specific
learning is assessed by comparing performance during the covert
repeating sequence to conditionswhere the order of the cues is pseudo-
random (or otherwise modified). However, SISL task performance is
measured by the proportion of correct interception responses made to
the moving cues rather than the reaction time to the onset of the cue.
Participants first learned a 12-item second-order conditional (SOC)
repeating sequence with an embedded timing pattern over 24 training
blocks of 60 trials (block duration=31.5 s; blocks were presented
successively with short participant-terminated breaks after every
8 blocks). Half of the participants trained on practiced sequence
B350C700B700D350A350C700A350D700C700D350B350A700 and the other half
on D350C700B700D350B350C700A350B700A700D350A350C700, where A, B, C,
and D represent target locations from left to right, and responses with
the left middle, left index, right index, and right middle fingers,
respectively. The subscripted numbers indicate the time inmilliseconds
between trials. The timing sequencewas constrained such that the same
interval could not occurmore than twice in a row. Since all cues had the
same velocity, differences in timing were visible on the screen as
differing distances between the cues as they moved vertically up the
screen. The sequencewas repeated throughout, except for duringblocks
7, 15, and 23, during which the cues followed a pseudorandom order
and timing sequence. Each of these pseudorandom blocks consisted of
five novel, randomly generated 12-item SOC sequences, and the timing
pattern was opposite to that of the practiced sequence (assuring
minimumoverlap). No fMRI datawere collectedduring training, but the
standard anatomical T1-weighted structural images were acquired
while the participants completed the last 16 blocks of training.

Participants then performed six scanning runs, each of which
contained 8 blocks of 60 trials (block duration=31.5 s), while T2⁎-
weighted BOLD data were collected. These runs contained four
conditions: practiced sequence (Practiced, same order and timing as
was practiced during the training runs), same order (SO, same order



Fig. 1. The SISL task and behavioral performance during SISL training and scanning runs. Participants saw circular cues scrolling towards a marked target zone (A), with button
responses by the middle and index fingers corresponding to the four targets (dashed circles). During training (B), behavioral performance demonstrated implicit learning. Each of
the three times that the repeating cue order and timing pattern was switched to a pseudorandom order and the opposite timing pattern, performance (number correct trials out of
60) significantly decreased from the flanking repeating sequence blocks, indicating sequence-specific learning. Pseudorandom blocks are indicated with open diamonds (*pb .05;
**pb .01; ***pb .001). During functional imaging (C), participants continued to show sequence-specific learning (PracticedNRandom) while failing to demonstrate transfer to the SO
or ST conditions. There was a significant order×timing interaction such that when either order or timing was changed from the practiced sequence, performance (number correct
trials per run, out of 120) decreased to the level of a pseudorandom sequence, showing a lack of transfer to the altered conditions. The comparison between Practiced and the average
of SO and ST (the main contrast for the fMRI analysis, Practiced–New) showed a significant decrease in performance for the transfer conditions.
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but opposite timing of the practiced sequence), same timing (ST, same
timing as the practiced sequence but pseudorandom order), and
pseudorandom (Random, pseudorandom order and opposite timing,
as in the pseudorandom blocks of training). The cue orders in each of
the ST and Random blocks were five novel, randomly generated 12-
item SOC sequences, in order to prevent learning of a novel sequence,
thereby maximizing sensitivity of contrasts with the Practiced
condition while maintaining the same statistical structure. To
randomize the condition order for the six transfer runs, 12 of the 24
possible orderings of the four conditions were randomly selected and
ordered for the first of every two participants (with the other 12
randomly ordered for the subsequent participant). Following these six
runs, an additional scan was completed in which a highly predictable
sequence (A500B500C500D500) was alternatedwith the trained sequence.

Following the final run, explicit recognition and recall tests were
administered while participants were still in the scanner (though no
neuroimaging data were collected). During the recognition test,
participants performed the practiced 12-item cue order and four
novel 12-item cue orders (all cues were separated by 500 ms for all
five sequences) in a randomorder. After each sequence, the participants
were asked to rate their confidence on a scale of 1–100 that the
sequence was encountered during the experiment (1=extremely
confident sequence was not encountered; 50=neutral; 100=ex-
tremely confident sequence was encountered). A recognition score
reflecting explicit sequence knowledge was calculated as the rating
given for the targetminus the average rating given to the four foils (as in
Gobel et al., 2011; Sanchez et al., 2010). For the recall test, participants
were told that there was a repeating sequence (other than the “highly
predictable” sequence) that they encounteredduring themajority of the
experiment, and participants were then asked to reproduce that
sequence as accurately as possible by pressing the buttons. Participants
were required to continue until 12 responses were made. A recall score
was calculated by identifying the longest matching subsequence
between the recalled sequence and the training sequence. This score
was compared to a baseline of the average longest matching
subsequence between the recalled sequence and the foils (as in Gobel
et al., 2011; Sanchez et al., 2010).

Neuroimaging
fMRI data were collected using a Siemens TIM TRIO 3.0 T MRI

scanner at Northwestern University equippedwith a 12-channel head
coil. During the second and third runs (training), high-resolution 3D
MP-RAGE T1-weighted anatomical scans (voxel size=1×1×1 mm;
160 axial slices) were collected. For each fMRI run, whole-brain T2*-
weighted EPI (44 axial slices of 3 mm thickness with no gap,
positioned to include the cerebellum), were collected every 2.4 s
(TR=2.4 s; TE=20 ms; flip angle=80º; 64×64 acquisition matrix;
FOV 22×22 cm; resulting voxel size=3.44×3.44×3 mm) for 115
volumes in each run.

Preprocessing. Neuroimaging processing and analysis was conducted
using AFNI (Cox, 1996). The first four volumes were dropped from
each functional run to allow the MR signal to reach equilibrium. The
functional data were then motion-corrected over time using a rigid
body transformation. Non-brain voxels (average signalb100 MR
units) and erratic voxels (signal changeN30% between successive
brain volumes) were clipped from the dataset, followed by spatial
smoothing using a 7 mm full-width half-max Gaussian kernel.
Structural data were normalized to a standard brain using a 12-
parameter transformation, and the participant's functional data were
then normalized using the same transformation matrix subsequent to
registration to the structural volume. The resulting voxels in the
smoothed, realigned, normalized functional images measured
2.5×2.5×2.5 mm.
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General linear model. The pseudorandom (Random) condition was
used as the baseline for neuroimaging data analysis. The hemody-
namic response to each of the other three conditions—Practiced, SO
and ST—was modeled using a separate block basis function (with
block duration set to 31.5 s) provided by AFNI, which convolved an
incomplete gamma function with a boxcar function. Relative to block
onset, the block basis functions peaked at about 15 s, were at plateau
until 31.5 s, and returned to baseline at about 47.3 s. For each
participant, a general linear model (GLM) regressed the BOLD
response against these basis functions to obtain estimates of evoked
neural activity for each condition relative to baseline. Simultaneously,
the GLM included a performance-based regressor of activity associ-
ated with the number of errors made during each TR, estimated over a
period of 2.4–12 s to incorporate hemodynamic delay. Six motion
parameters were used as base model regressors of non-interest (to
control for movement-related activity).

Whole-brain group analysis. For the whole-brain random-effects group
analysis, the coefficients were analyzed via one-sample t-tests, yielding
a t-value for each voxel in each of the contrasts. A per-voxel t-value
threshold of tN4.5 was used. A Monte Carlo simulation with normally
distributed random noise data over the dimensions of the averaged
brain determined that at tN4.5, theminimumcluster volume thatwould
result in an overall alpha level of .05 was 327 mm3.

ROI-AL analyses. The bilateral putamen, caudate, and globus pallidus
of the basal ganglia served as a priori regions of interest (ROI) to guide
a subsequent cross-subject alignment using the ROI-AL of Yassa and
Stark (2009). Using anatomical guidelines, each participant's basal
ganglia regions were individually identified and ROI-AL was used to
maximize the cross-participant alignment of these regions (instead of
aligning across the whole brain as in traditional normalization
techniques) and overlap of striatal subregions. Due to the a priori
hypotheses and the constrained search volume, a lower t-value
threshold of tN2.5 with cluster volume threshold of VN582 mm3 (as
obtained from a separate Monte Carlo simulation) was used to set the
overall alpha level at .05.

Results

Behavioral

During the initial training phase of the SISL task (Fig. 1A),
participants learned the repeating sequence (Fig. 1B). Their perfor-
mance (number of correct trials) significantly decreased during each
pseudorandom block relative to its flanking repeating sequence blocks,
with an overall mean difference of 4.7 trials (SE=1.0), t(17)=4.65,
pb .001, reflecting a drop in performance from 76% correct for the
repeating sequence to 68% correct for random trials. This differencewas
reliable at each training assessment: t(17)=2.88, p=.01; t(17)=4.29,
pb .001; t(17)=2.46, p=.02, respectively. The reliable decrease in
performance indicates that participants learned the practiced sequence
during training. Performance during the six scanning runswas assessed
with a 2 (same order or random order)×2 (same timing or opposite
timing)×6 (run number) repeated-measures ANOVA. There was a
significant main effect of changing the response order, F(1,17)=18.40,
pb .001, ηp

2=.52, but there was no main effect of changing inter-
response timing, F(1,17)=2.02, p=.17, ηp

2=.11. Critically, there was a
significant order×timing interaction, F(1,17)=5.58, p=.03, ηp

2=.25,
such that participants performed best when neither the order nor the
timingwas changed (Fig. 1C). Therewasnomain effect of run, F(5,85)=
0.58, p=.71, nor did run reliably interact with order, F(5,85)=0.98,
p=.43, with timing, F(5,85)=0.57, p=.72, or with order×timing,
F(5,85)=0.56, p=.73, suggesting that these effects did not change
over the scanning session.
Paired t-tests (collapsed across runs) revealed that performance
during the practiced sequence (Practiced) was significantly better
than during the Random, t(17)=3.03, pb .01, and ST (same timing)
conditions, t(17)=3.65, pb .01, and there was a trend towards better
performance during the practiced sequence than during the SO (same
order) condition, t(17)=1.94, p=.07 (Fig. 1C). There was no
difference in performance between the Random, ST, and SO
conditions, F(2,34)=0.27, p=.77. Collapsing across the ST and SO
conditions, performance was significantly worse during blocks of the
transfer sequences altered on one dimension (M=88.0 correct trials
out of 120, SE=5.8) than during the blocks of the practiced sequence
(M=94.0, SE=5.5), t(17)=2.69, p=.02. During the additional scan
at the end, performance during blocks of the highly predicable
sequence (M=200.2 correct trials out of 240, 83% correct, SE=15.7)
did not significantly differ from that during the trained sequence
(M=194.0 correct trials, 81% correct, SE=12.4), t(17)=0.82, p=.42.

After scanning, participants' explicit sequence knowledge was
assessed. The average recognition score was reliably greater than zero
(M=24.3, SE=4.7), t(17)=5.23, pb .001, indicating that participants
obtained some explicit knowledge of the repeating sequence.
However, the recognition score was not correlated with the implicit
sequence learning score obtained during training, r=.20, p=.42. In
addition, those with the lowest explicit recognition scores (by median
split) still demonstrated reliable implicit learning scores, with an
overall mean difference of 3.8 trials (SE=0.7), t(8)=5.16, pb .001. In
their attempt to recall the repeating sequence, the sequences
produced did not reliably match the learned sequence (M=4.6
consecutive matches, SE=0.5) better than they matched the
recognition foils (M=4.0, SE=0.1), t(17)=1.16, p=.26.
Neuroimaging

No reliable differences in evoked activity were observed between
the SO, ST, and Random conditions (neither in thewhole-brain nor the
ROI-AL analyses), providing no evidence here for separate neural
representations of action order and response timing. To identify the
neural correlates of sequence learning in the SISL task, both of the
transfer conditions (with performance at the level of the Random
baseline) were combined (as “New” sequences) and activity was
contrasted with the repeating sequence (Practiced) condition. During
the practiced sequence, significant decreases in activity were
observed across a bilateral cortical network consisting of premotor,
parietal (superior parietal/precuneus medially and inferior parietal
laterally), and extrastriate occipital cortices (Fig. 2; Table 1). Accom-
panying this deactivated network for the practiced sequence (relative
to the transfer conditions) was significantly increased activity in
medial prefrontal cortical regions (Fig. 3A). Regardless of the
sequence condition, activity in the posterior cingulate was inversely
correlated with number of errors (Fig. 3C); higher activity was
observed during periods of time when participants are making more
correct responses (fewer errors) in general.

To further examine possible differences in activity associated with
the SO and ST conditions (and separate representations of order and
timing), an exploratory functional ROI analysis was conducted with
ROIs defined by the parietal, premotor, and occipital clusters from the
Practiced–New contrast. During the ST condition, activity was
numerically higher than the Random baseline across the ROIs,
although the effect was only reliable for the left precuneus and left
inferior parietal ROIs, t(17)=2.37, p=.030; t(17)=2.14, p=.047;
respectively. Activity during the SO condition did not appear to differ
from the Random baseline for any of the ROIs. Activity was reliably
lower in the Practiced condition than the Random baseline across
regions, but this reflects the fact that the ROIs were selected on this
basis. During the additional scanning run at the end, no reliable
activity differences were observed between the highly predicable



Fig. 2.Decreased activity across a distributedbilateral cortical networkduringperformance of thepracticed sequence relative to the transfer conditions. The Practiced–Newcontrast shows
that therewas a decrease inneural activity in the extrastriate occipital (A), parietal (B), andpremotor (C) corticeswhile participantswereperforming the practiced sequence relative to the
SO and ST conditions (“New”). Significantly deactivated clusters were those consisting of deactivated voxels (tN4.5) that passed a minimum cluster volume threshold of VN327 mm3.
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sequence and the trained sequence, which did not significantly differ
in performance level.

Since activity changes in the basal ganglia are very commonly
reported in neuroimaging studies of sequence learning, a ROI-AL
analysis was used to assess activity changes with maximum
sensitivity in the striatum. No reliable differences in activity between
the practiced sequence (Practiced) and New sequences (SO, ST) were
observed in dorsal parts of the basal ganglia (caudate, putamen) after
ROI alignment (nor in the whole-brain analysis). However, a region in
the left ventral striatum (Fig. 3B), near the nucleus accumbens, was
found in which increased activity was associated with performing the
repeating sequence.

Discussion

Participants learned the repeating sequence during trainingwith the
SISL task, as reflected in a significant decrease in their performance
(increased error rate) when the cues did not follow the practiced order
and timing. The sequence-specific learningdemonstratedhere replicates
our previous findings with the novel SISL task, a paradigm that requires
Table 1
Volume-thresholded clusters (tN4.5, VN327 mm3) of regions that differentially
activated to the practiced sequence versus transfer sequences (New). Coordinate
order is LPI: left, posterior, and inferior are negative.

Contrast Brain region Talairach coordinates
(x, y, z) of CMass

Cluster size
(mm3)

PracticedbNew Rt Precuneus/SPL (BA 7) (+20, −70, +41) 6984
Rt Inferior parietal lobule (+45, −35, +43) 5516
Lt Precuneus/SPL (BA 7) (−23, −64, +48) 5391
Lt Inferior parietal lobule (−50, −35, +40) 2719
Rt Middle frontal gyrus
(premotor/BA 6)

(+25, −4, +54) 1828

Lt Middle occipital gyrus (−38, −79, +12) 1703
Lt Middle frontal gyrus
(premotor/BA 6)

(−27, −5, +53) 1375

Rt Inferior
occipitotemporal (V5/
hMT+)

(+41, −61, −5) 828

Lt Inferior
occipitotemporal (V5/
hMT+)

(−45, −64, −10) 484

PracticedNNew Medial frontal gyrus/
anterior cingulate

(−2, +44, +24) 1813

Medial superior frontal
gyrus

(+2, +47, +43) 422
temporal accuracy in sequential responses (Gobel et al., 2011).
Participants did demonstrate some concomitant explicit knowledge of
the sequence on the recognition task as a group.Whilewe cannot be sure
that explicit knowledge did not contribute to performance in someway,
it was not correlated with the performance benefit, and even thosewith
low recognition scores showed a reliable sequence-specific improve-
ment. Furthermore, if explicit knowledge was driving performance, one
might have expected it to benefit performance in the SO condition
(where the cue order wasmaintained, but timing changed), but transfer
to this condition was not observed. These behavioral observations
combined with the neural correlates of learning strongly suggest that
sequence-specific improvementwas a product of implicit learning of the
sequence. The lack of even partial transfer to conditionswhere the order
was maintained and the timing was altered (SO) or the timing pattern
was maintained and the order was changed (ST) suggests that implicit
sequence-specific learning here depends on an integrated representa-
tion of order and timing.

The primary consequence of perceptual–motor sequence learning
on brain activity was reliably less evoked cortical activity in a
widespread cortical network during performance of the learned
sequence relative to untrained sequences. Areas exhibiting less
activity for the practiced sequence included the bilateral premotor
cortex (BA 6), which is involved with movement selection and
initiation (e.g., Weinrich and Wise, 1982), and has previously been
reported to show increased activity during learning of a practiced
sequence during the SRT task (Grafton et al., 1995; Hazeltine et al.,
1997; but was also found to be deactivated in Aizenstein et al., 2004).
Lower levels of evoked activity were also observed in the precuneus
and anterior inferior parietal lobule, regions that are likely part of the
dorsal visual stream involved in spatio-motor integration (Goodale
and Milner, 1992) and that are associated with motor planning
(Hanakawa et al., 2008) and motor sequencing (Jubault et al., 2007).
The occipito-temporal deactivation, particularly in the right hemi-
sphere, is close to areas reported as hMT+ in Maruyama et al. (2009).
Area hMT+ is the purported human analog of primate area MT, the
motion-processing area of extrastriate cortex, which has been
implicated in other interception tasks (e.g., Bosco et al., 2008).

The network of regions exhibiting reduced activity for the trained
sequence were brain areas likely involved in performing the SISL task.
These differences likely reflect increased fluidity of neural processing
(i.e., facilitation) while performing the practiced sequence relative to
novel sequences. As in other studies of implicit learning, the critical
regions for learning may be the same as regions involved in
performance (e.g., Reber et al., 2003, 2005), reflecting a learning

image of Fig.�2


Fig. 3. Increased activity in targets of themesolimbic dopamine pathwaywhile performing the practiced sequence relative to the transfer conditions and in the posterior cingulate during
periods of better performance. The Practiced–Newcontrast showedgreater activity in themedial prefrontal cortex (A;whole-brain contrast, tN4.5 andVN327 mm3) and in the left ventral
striatum(B; constrained search volume following ROI-AL of the striatum, tN2.5 and VN582 mm3;within themask, left ventral striatumcluster volume is 731 mm3 and center ofmass is at
−8.4, +13.1, −1.5 mm). Activity in the posterior cingulate cortex (C) was higher during periods of more successful performance of the SISL task, i.e., was negatively correlated with
number of errors (whole-brain contrast, tN4.5 and VN327 mm3; posterior cingulate cluster volume is 1234 mm3 and center of mass is at +0.6,−49.7, +28.8 mm).
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process that improves efficiency in performance networks specifically
for the trained information. However, it may also be the case that the
differential activity in this network reflects a consequence of learning
that occurred in a brain region outside of this network. Furthermore, a
region selectively involved solely in the learning process might be
missed here because participants had some initial practice with the
repeating sequence prior to functional imaging, or possibly because
learningmay be occurring for both the repeating and novel sequences.
Since implicit learning is automatic (and outside awareness),
conditions that do not engage sequence learning processes may be
difficult to construct without also introducing perceptual or motor
confounds.

The ubiquity of learning across conditions may explain the null
result obtained when contrasting the practiced sequence with the
predictable sequence. The predictable sequence is rapidly learned
(reaching performance levels that did not differ from the trained
sequence), but is still far from being executed flawlessly during
scanning (performed at 83% correct), which reflects the overall
difficulty level of the SISL task (due to the need for precise timing of
responses). Both sequences were learned to the point that perfor-
mance was facilitated to a similar degree, yet it is likely that learning
was also ongoing during this final scan. Therefore, simultaneous
learning processes and improvements in performance to similar
degrees for both the predicable sequence and the trained sequence
(along with the small number of brain volumes acquired during the
predictable sequence) could lead to the lack of a reliable difference in
brain activity observed here.

Regions associated specifically with learning might be expected to
exhibit greater activity for the practiced sequence than the untrained
sequences. We observed two such candidate regions. During
performance of the practiced sequence, the ventral striatum and
medial PFC were more active, which may reflect reward-related
processing (Schultz et al., 1992) or the detection of salient predictable
events (Matsumoto and Hikosaka, 2009) that underlies sequence
learning, though these activations might also reflect the rewarding
nature of more successful performance or “flow” as discussed below.
In addition, there was greater activity in the posterior cingulate during
periods of better performance, which may reflect more successful
anticipatory control of spatial attention (Small et al., 2003) preceding
correct responses. It is also possible that the posterior cingulate and
medial prefrontal activations may reflect activity in the default mode
network (DMN; Raichle et al., 2001). These areas, particularly the
posterior cingulate, have been proposed as important hubs of
convergence in the DMN (Buckner et al., 2008). During the
presumably less challenging and less attention-demanding periods
of the practiced sequence and/or better performance, cognitive
resources could be more free for the internally-directed mental
processing that is presumed to underlie the DMN. However, other
core hubs of the DMN either showed deactivations (precuneus and
inferior parietal lobule) or no reliable activity differences (medial
temporal lobe) associated with the practiced sequence.

Most previous studies of perceptual–motor sequence learning
using the SRT task have reported higher activity for known sequences
in the basal ganglia (Albouy et al., 2008; Doyon et al., 1996; Grafton
et al., 1995; Hazeltine et al., 1997; Peigneux et al., 2000; Rauch et al.,
1995, 1997; Schendan et al., 2003; Seidler et al., 2005; Wächter et al.,
2009; Willingham et al., 2002), including both those focusing
primarily on increases throughout acquisition (Grafton et al., 1995;
Hazeltine et al., 1997; caudate in Schendan et al., 2003; Seidler et al.,
2005) and sequence-specific activations observed for a sequence that
has already been learned to some degree, relative to random
sequences (Albouy et al., 2008; Doyon et al., 1996; Peigneux et al.,
2000; Rauch et al., 1995, 1997; Schendan et al., 2003; Wächter et al.,
2009; Willingham et al., 2002). In addition, many have also found
higher activity in the motor or premotor cortex (Grafton et al., 1995;
Hazeltine et al., 1997; Rauch et al., 1995, 1997; Seidler et al., 2005) and
in the parietal cortex (Doyon et al., 1996; Grafton et al., 1995;
Hazeltine et al., 1997; Rauch et al., 1997; Seidler et al., 2005;
Willingham et al., 2002). As a result, Doyon and Benali (2005)
proposed a model of motor sequence learning that predicts increased
activity in the basal ganglia supporting production of well-learned
motor sequences. Our results stand in contrast with the findings
above, as the primary neural correlates of performing a known
sequence in the SISL task were lower levels of evoked cortical activity
relative to unknown sequences. However, our results are consistent
with several reports of deactivations in these regions associated with
a learned sequence (Aizenstein et al., 2004; Berns et al., 1997; Fletcher
et al., 2005; Poldrack et al., 2005). The inconsistency in these findings
may be partly due to the difficulty of separating the neural correlates
associated with the consequence of learning from those involved in
the representation of sequence knowledge. In the SRT task, learning is
expressed through increasingly rapid reaction times. Faster reaction
times, in general, are known to be associated with greater activity in
the motor cortex and putamen (Dai et al., 2001; Orban et al., 2010;
Turner et al., 2003). Nonspecific performance effects associated with a
learned sequence could therefore complicate the interpretation of
learning-related changes in activity assessed with the SRT task.

In the SISL task, sequence knowledge is expressed as increasingly
accurate timed responses to intercept moving cues in sequence, a
more challenging task than a simple 4-AFC button press. The
sequence-specific cortical deactivations reflect less effort required to
perform the SISL task (i.e., facilitation or fluidity of processing) during
a learned sequence, which is specific to both the order and timing
pattern of the sequenced actions. This facilitation implies a higher
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level of neural efficiency following practice with a sequence.
Improved neural efficiency is also seen in expert or highly trained
marksmen and golfers, who show refined cortical dynamics (e.g.,
improved EEG alpha power) during the preparatory aiming period,
interpreted as deactivation of cortical areas nonessential to the task
(Hatfield et al., 2004; Kerick et al., 2004). Our observation of less
activity in brain regions likely to be essential to the SISL task may
reflect sequence-specific improved neural efficiency leading to
increasing ease and fluidity in performance rather than a state of
extreme concentration present in the aiming period of expert
marksmen and golfers. Nonetheless, the neural efficiency hypothesis
is also supported by findings with more automatized tasks that do not
require high concentration. For example, during a single-leg balancing
task, the alpha power decrease (i.e., increased cortical activity)
observed was smaller in magnitude (i.e., less of an increase in cortical
activity) for elite fencing and karate athletes (Del Percio et al., 2009),
and training with a visuomotor adaptation task has been shown to
result in increased alpha power (Gentili et al., 2011), reflecting
decreased cortical activity. Therefore, a number of neural efficiency
studies as well as our fMRI results with the SISL task reflect brain
deactivation and increased fluidity accompanying well-practiced
skills. The sense of increasing ease and fluidity as learning proceeds
invokes the idea of “flow” that occurs in highly trained skilled
performance (Csikszentmihalyi, 1990; Ericsson and Ward, 2007). The
interface to the SISL task is derived from a number of currently
popular video games, likely reflecting a conscious element of game
design aimed at creating a positive emotional state during successful
performance.

The idea of “flow” in skilled performance, associated with a positive
emotional state, is consistent with the idea that activations in the
ventral striatum andmedial PFCmay reflect reward-related processing.
Both of these regions,which exhibit greater activity duringperformance
of the known sequence, are targets of the mesolimbic dopamine
pathway from the ventral tegmental area (VTA). The ventral striatum
has been frequently found to exhibit higher activity during performance
of a known sequence (Doyon et al., 1996; Grafton et al., 1995; Hazeltine
et al., 1997; Peigneux et al., 2000; Rauch et al., 1995; Schendan et al.,
2003; Seidler et al., 2005; Wächter et al., 2009). The ventral striatum
may activate to predictable environmental events related to expecta-
tion of reward (Schultz et al., 1992)—for example, the rewarding nature
of a successful response—so these findings might reflect dopamine-
related reward processing that supports building the associations
between actions into the representation of the sequence during
learning. Alternately, dopaminergic neurons may have a role in making
outcome predictions regardless of reward. In addition to dopaminergic
neurons whose firing patterns were associated with predictability of
reward, Matsumoto and Hikosaka (2009) found a large number of
macaque nigrostriatal dopaminergic neurons that increased in activity
to stimuli predicting positive or negative events. Firing rates increased
with predictability of outcome, suggesting increased activity should be
observed as learning occurs. This suggests that the dopaminergic
system may also be broadly involved in learning sequential associa-
tions, regardless of valence/reward.

If the sequence-specific activation in the ventral striatum reflects a
modulatory change in dopamine, a key question remains about the
neural substrate of the representation of sequence learning. Impair-
ments in sequence learning observed in patients with Parkinson's
disease (Siegert et al., 2006) suggest that dopamine dysfunction affects
sequence learning and that corticostriatal circuits normally participate
in sequential learning. Corticostriatal circuits connect the basal ganglia
with traditionalmotor areas (suchas themotor cortex, premotor cortex,
and SMA) most directly associated with motor control as well as most
other cortical regions (Middleton and Strick, 2000). Previous studies
that have found cortical deactivations associated with implicit learning
have interpreted these changes as experience-related improvements in
processing efficiency. This phenomenonhas beenobserved in repetition
priming (Reber et al., 2005; Schacter et al., 2007) as well as visual
category learning (Aizenstein et al., 2000; Reber et al., 2003). The
sequence-specific decrease in activity found here suggests that the
neural representation of sequence learning is improved processing
efficiency in the inferior and posterior parietal cortex, precuneus,
occipito-temporal cortex, and premotor cortex that depends on
dopamine-gated plasticity in corticostriatal circuits.

The post-hoc functional ROI analysis revealed that activity in the
left precuneus and left inferior parietal cortex was reliably higher in
the ST condition than in the Random baseline. Although speculative,
these differences may suggest that interference is occurring when a
novel action sequence is executed with a learned rhythm; the motor
system could be preparing the incorrect actions at specific times,
resulting in decreased processing efficiency. Perhaps this explains
why timing has been found to be subordinate to order (O'Reilly et al.,
2008; Shin and Ivry, 2002), since knowing the timing but not the
action order does not facilitate preparation of the appropriate
movements.

Conclusions

The new SISL paradigm provides a model for studying the
acquisition of increasingly fluid and accurate sequential motor
performance and sequence-specific learning. The representation of
the known sequence integrates both action order and timing
information such that transfer is essentially non-existent to sequences
with only order or timing maintained. The neural correlate of this
sequence-specific learning is a pattern of deactivation indicating
improved processing efficiency across cortical regions involved in
motor planning, spatio-motor integration, visuospatial processing,
and visual motion processing. Higher activity during fluid perfor-
mance of a known sequence was observed in the ventral striatum and
medial prefrontal cortex, reflecting the likely involvement of
dopamine-gated plasticity in corticostriatal circuits necessary for
sequence learning. The changes observed here and the mechanisms
supporting these changes are likely to contribute significantly to the
neural basis of expert motor skill learning, particularly improvements
based on repeated practice of specific motor sequences that are
precisely timed.
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